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Abstract

Tables can be regarded as a data exploration way. A well-presented table can make
it easier for the reader to see the patterns or decide the next analysis step. Ehrenberg
(1977) summarized several basic table visualization rules, we’re trying to apply these
rules using the R package: tidytable. Furthermore, our tidytable package generalizes
these basic rules to high-dimensional space, so this package can deal with multi-way
tables. We also propose a new idea: location. By finding a location and extract it, we
can make the original table clearer and briefer, without affecting the patterns of the
original table.

keywords: Table visualization Multi-way tables Location Order Swap Table unit
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1 Introduction

1.1 Background

Graphics are widely known as a data visualization tool. Indeed, they can attract the

reader more easily. However, Ehrenberg (1977) mentioned that, “graphs are of little use

in communicating the quantitative aspects of the data, but they can highlight quantitative

results (like that something has gone up, is a curve rather than a straight line, or is smaller

than large). A graph can make the points more “graphic”, and hence graphs can be very

useful at the beginning or end of an analysis.”

In the discussion article Why tables are really much better than graphs (2011), Andrew

Gelman provides a tongue-in-cheek argument about graphical methods, from the standpoint

of “a hypothetical old-school analytical statistician or social scientist”. He mentioned the

real problem is that “graphs are inherently a way of implying results that are often not

statistically significant”. While showing the aversion to graphs, he also expresses support to

the tables. He gives his preferences of table layout, such as putting the exact numbers of

results summary, a minimum of four significant digits, using the variable names provided by

the computer program as row and column names etc.

At the same year of Gelman’s discussion article, Michael Friendly & Ernest Kwan (2011)

gave a comment about this article from a psychological perspective. This comment article

emphasizes that graphs and tables are both communication modes, which should be tailored

to the audience to achieve the desired goal. They also assert that there is a dimension of

cognition, where people can be divided to graph people or table people. This comment also

calls attention to a brief note by Karl M. Dallenbach (1963) that,

• All the evidence obtained from the reproduction of the study mentioned here indicates

that the graph method is ’better’ than the tabular. Tables, since graphs are based

on them, are necessary, but they are like background rocks, heavy and interesting.
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Graphs, on the other hand spice the reports; clarify them, and make them interesting

and palatable. (Dallenbach 1963, p.702)

With regard to Gelman’s preference that the exact number of results summary should be

put into the table, Friendly & Kwan referred in their comment that “in many case either the

coefficients in fitted model are meaningless without graphical display or their interpretation is

exceedingly difficult to understand”, and “even pure table people cannot extract any sunlight

from such tabular cucumbers”. This comment also mentioned some combination way of tables

and graphs such as the semi-graphic display and the tableplots.

Richard A. Feinberg & Howard Wainer (2011) surveys display formats in the Journal of

Computational and Graphical statistics during the period 2005 - 2010, and discover that the

most dominant format was table. They mentioned brothers Farquhar’s comment:

• The graphical method has considerable superiority for the exposition of statistical facts

over the tabular. A heavy bank of figures is grievously wearisome to the eye, and the

popular mind is as incapable of drawing any useful lessons from it as of extracting

sunbeams from cucumbers. (Farquhar and Farquhar, 1891, p.55).

Feinberg & Wainer referred that, in the past data storage is an important role for tables; but

in the modern world table is used for human eyes and human minds, so many of the various

elements critical for an accurate archive may no longer be suitable. They also proposed that

we should make the table more graphical, and they recommend several steps toward tabular

improvement: rounding; using summary statistics and bolding, spacing them apart and/or

separating them with a ruled line; and ordering.

1.2 Table visualization

Tables are a data exploration method if they’re presented in an appropriate way. In Data

Reduction (1975), Ehrenberg displays how to analyze the undigested table using various steps
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to see the patterns. He also gives a summary of guidelines that can be regarded as the basic

rules of table visualization. For instance:

• Rule 1: Reduce number of digits, usually round to two significant or efficient digits for

mental arithmetic.

• Rule 2: Order rows and columns by size, rearrange rows to have large numbers appear

above small numbers, rearrange columns so that averages are strictly decreasing (or

increasing) from left to right.

• Rule 3: Figures are easier to compare in columns, numbers that vary the least should

appear in columns.

• Rule 4: Use averages (or medians) to help focus the eye over the array.

• Rule 5: Note dramatically exceptional values and exclude them from pattern summary

calculations.

• Rule 6: Avoid introducing new variables or scales (e.g. totals) whenever possible.

• Rule 7: Figures to be compared should be close together.

• Rule 8: Use memorable self-explanatory symbols and labels.

• Rule 9: Separate different types of items/groups with white space or gridlines.

• Rule 10: Summarize irregular aspects of the data statistically, e.g. by average deviations

from appropriate averages.

In his paper Ehrenberg (1977), Ehrenberg gives a discussion of those objections and problems

having been raised from using some of those basic rules, which makes these rules more

reasonable.
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The tables (Murdoch, 2014) package developed a way to provide the user with good-looking

tables on R, LaTeX or other formats, to do further analysis to find the patterns in the table.

However, in terms of applying these basic rules, it still needs users to analyze the table

manually.

SAS proc tabulate has the similar functions as tables package does; it uses SAS to produce

nice looking tables with several types of format. Except for two-way tables, where the rows

are the first way and the columns are the second way, SAS proc tabulate could also make

three-way tables by spanning multiple blocks of two-dimensional table. But still, all the

analysis work are left to be done by users, it can not give a neat and tidy table directly.

In terms of multi-way tables, in R ftable() function in stats package could produce ‘flat’

contigency tables with multiple variables, it could store high-dimension information. The

user could specify the variables shown on the rows using row.vars parameter and specify the

variables on the columns by col.vars.

What we have done is trying to implement those table visualization rules automatically in R

using the package called tidytable. It still needs the user’s judgments at some places, but

generally the tidytable package tries to do the user’s work as much as possible and give a

tidy table for the user to see the patterns or decide what the next analysis step is, after the

user inputting the initial table numbers.

Here, we also propose a new idea, namely “location”, in the table analysis, based on those

situations where the numbers in the table look massive, but actually most of them share a

same location, which can be removed to see the patterns more clearly and won’t affect the

original patterns of the table.

Furthermore, we consider multi-way tables; try to generate these basic rules to higher

dimension, which requires our own explorations and creations, since these rules become much

more complicated to match in higher dimension. Tables we have seen before are mainly

two-way tables, but there are more complex tables where more than two dimensions of
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information are recorded in the table. These tables actually require implementation of these

basic rules to improve the data presentation even more than the ordinary two-way tables do.

2 Constructing more meaningful tables

2.1 General Structure of tidy table analysis

Consider the following fictitious two-way table:

Table 1

Q1 Q2 Q3 Q4
North 4102097.62 4102092.24 4102100.90 4102090.39
South 4102048.29 4102042.31 4102049.98 4102039.09
East 4102075.23 4102075.16 4102100.11 4102074.23
West 4102049.69 4102057.21 4102080.19 4102051.09

As presented, it is difficult to see what patterns, if any, appear in the data. For example, all

of the numbers are small variations from the relatively large number 4102000. It might make

sense then to begin by removing this value from all elements in the table. The resulting table

would be:

Table 2

Q1 Q2 Q3 Q4
North 97.62 92.24 100.90 90.39
South 48.29 42.31 49.98 39.09
East 75.23 75.16 100.11 74.23
West 49.69 57.21 80.19 51.09

In this case, we can regard 4102000 as a “location”, by finding and removing the location,

the table has less digits, this achieves part of the purpose of Rule 1 in Introduction section:

reduce number of digits. The resulting Table 2 is actually one example in Data Reduction

(1975). This two-way table records the sales data in four areas (North, East, West and South)
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and four three-month periods (Q1, Q2, Q3 and Q4) in 1969. After removing the location,

there are still too many digits in the table, so we round the table to two significant digits, as

showed in Table 3.

Table 3

Q1 Q2 Q3 Q4
North 98 92 100 90
South 48 42 50 39
East 75 75 100 74
West 50 57 80 51

Now without the distraction of too many digits, the table becomes much succincter. We also

achieve the remaining part of Rule 1: round to 2 significant digits.

Then we might be interested in which of the four areas has the largest sales outcome and

which has the smallest outcome. Since each area has four sales records corresponding to four

quarters in 1969, we need to combine these four numbers as a summary to compare among

the four areas. For example, we can use the average or the median as the summary. If we

use the average as the summary of each area (row) and then order the rows based on this

average, Table 3 becomes as follows:

Table 4

Q1 Q2 Q3 Q4
North 98 92 100 90
East 75 75 100 74
West 50 57 80 51
South 48 42 50 39

So based on the average sales data in 1969, the North area has the largest sales and the South

area has the smallest sales outcome. We can also order the columns to see which quarter

has the largest sales, but some people also prefer to keep the chronological order, so here we

don’t order the columns.
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We may also find that for each row, the numbers don’t differ much. We try to swap the rows

and columns, see Table 5. Now we can see how much easier it is to scan down the columns to

see the little variability in the leading digit. Also the exceptions now stand out more easily,

namely the 100 in the column East and the 80 in the column West, similarly the Q3 row

overall.

Table 5

North East West South
Q1 98 75 50 48
Q2 92 75 57 42
Q3 100 100 80 50
Q4 90 74 51 39

Following the above steps, we gradually transform Table 1 to Table 5. Patterns of the

originally noisy data become clearer and clearer. These are thegeneral steps of our tidytable()

function, but in the function we choose to round the table to two significant digits at the last

step, we use original data during the intermediate analysis for the purpose of precision. At

the last step, we also try to find a unit of the table.

The general structure of our tidytable analysis can be summarized as Figure 1.

2.2 Get the location

The more digits the number has, the harder it is for the reader to absorb information

effectively. Given a table with long-digit numbers, we need to reduce the number of digits to

make the patterns clearer. Reducing digits can not only be achieved by rounding, subtracting

a location is a more effective way, given the condition that most of the numbers in the table

share a similar location. Briefly speaking, the location of a table is a number constructed

by several digits shared by all the table numbers. By subtracting the location, the table

will be tidier; and it won’t affect patterns of the data, subtracting a same number won’t

affect the variability (such as standard deviation) of a sample. We can add the location back
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Figure 1

when summarizing the final patterns. In our package, getLocation() function can find the

location of a sample of data. For the example Table 1 dispalyed in the beginning of Section

2, getLocation() will give 4102000 as the location. Let’s look at some other examples first.

library(tidytable)

table1

## C D

## A 1111110000 1346578900

## B 1134516000 1234567890

getLocation(table1)

## [1] 1.1e+09
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table1 - getLocation(table1)

## C D

## A 11110000 246578900

## B 34516000 134567890

By removing the location, we reduce the number of digits from 10 to 8.

table2

## [1] 0.7999 0.7998 0.7998 0.7997

getLocation(table2)

## [1] 0.799

table2 - getLocation(table2)

## [1] 0.0009 0.0008 0.0008 0.0007

In table2 example, we reduce the number of digits from 4 to 1 by removing the location.

Here, we extract 0.799 as the location not 0.7997. If we use 0.7997 as the location, then we

will get the analyzed sample as follows:

table2 - 0.7997

## [1] 0.0002 0.0001 0.0001 0.0000
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Location doesn’t mean the smallest number in the table; otherwise those smallest numbers will

become zeros after removing the location. We still want to keep the last digit of the numbers,

because sometimes the last digits are important for visualizing the patterns. Although in

some cases, the last so many digits will still become zero due to the final rounding, but here

we still want to keep the last digit in case it’s important in further analysis.

getLocation() can also deal with situations of negative numbers.

table3

## [1] -49991234 -49983454 -50013333 -49923333

getLocation(table3)

## [1] -49900000

table3 - getLocation(table3)

## [1] -91234 -83454 -113333 -23333

table4

## [1] 4220 4232 -6332 4578

getLocation(table4)

## [1] 0

getLocation() can deal with multi-way tables. In summary, when we input a sample of data,

getLocation() can help us find a location shared by all the numbers in the sample.
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The algorithm of getLocation() involves checking the exponent and value of a digit. Here,

“value” means the value of the digit, and “exponent” means the magnitude (power of 10) of

the digit. For example, for 5423, the value of the first non-zero digit is 5, and the exponent

of it is 4; the value of the second digit is 4, and the exponent is 3. Similarly, 0.00702, the

value of the first non-zero digit is 7, and the exponent is -3; the value of second digit is 0,

and the exponent is -4. Then the algorithm of getLocation() can be described as:

1. Start with the first non-zero digit of numbers in the table, if the value and exponent of

the first non-zero digits are all the same, then we record the value and the exponent of

it.

2. Continue to check the second digit to see if it’s shared by all the numbers in the table,

if it is, then record the second digit’s value and exponent.

3. Keep checking the value and exponent of each digit until you find one digit that is

not shared by all the numbers. Then those digits in-common recorded can be used to

construct the location.

In order to decompose the value and the exponent of each digit, we need to first decompose

the coefficient and the exponent of each number. For example, the scientific notation for 5423

is 5.423e+03, then the coefficient of 5423 is 5.423, and the exponent of it is 3. The scientific

notation of 0.00702 is 7.02e-03, the coefficient is 7.02 and the exponent is -3. Therefore, we

need a function to extract the coefficient and exponent, which are those two numbers before

and after the letter “e” in the scientific notation. The SciNotation() function is written to

achieve this aim.

When checking the value and exponent of each digit, it’s not necessarily to be as strict as

“exactly the same”. We could also allow some extreme values to happen, but if most of

the numbers share a same digit, that digit can also be extracted to construct the location.

cSpread() function can be used to calculate the center spread of a sample of data. By setting
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a fraction, say 0.8, we could calculate the 80% center spread of the sample by ignoring 10% of

the data in both ends. In cSpread() function, we use the range to represent the spread. In the

getLocation() algorithm, we can use cSpread() to calculate the center spreads of exponents

and the values of a digit, if the center spreads are less than some thresholds, we can extract

the digit to construct the location. In this way, getLocation() function can be more robust

by not considering extreme values.

During the construction of the function getLocation(), we encountered some problems of

machine floating point system.

The paper Why every computer scientist should know about floating-point arithmetic (1991)

illustrates this problem that, “Squeezing infinitely many real numbers into a finite number of

bits requires an approximate representation. Although there are infinitely many integers, in

most programs the result of integer computations can be stored in 32 bits. In construst, given

any fixed number of bits, most calculations with real numbers will produce quantities that

can not be exactly represented using that many bits. Therefore the result of a floating-point

calculation must often be rounded in order to fit back into its finate representation.” For

example, the number 1
3 is a repeating decimal 0.33333. . . , but in R,

print(1/3,digits=22)

## [1] 0.3333333333333333148296

Similarly,

print(0.7,digits=22)

## [1] 0.6999999999999999555911

So some inaccuracies might happen here. We try to avoid these inaccuracies as much as

possible, by transforming those rational numbers to integers, then follow the way of dealing

with integers. After the analysis, we transform the numbers back.
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Location can be understood more generally. When we compare different things, removing the

common part they share can make the difference more obvious. In this way, our attention

can also be focused to the difference, instead of letting the difference submerge within the

huge common part.

2.3 Order the dimensions

Ordering can provide a general ranking of the layers in a dimension. Like the example

displayed in Section 2.1, ordering the rows can give us a rough idea about the sales ranking

of four areas. As Rule 3 says, order the rows and columns by size. Here, “size” is a summary

of a subsample of the data. In the table case, the table contains a whole sample of data;

with regard to one dimension of the data (like the areas in sales data examples), different

levels (like the four areas: North, South, East and West) divide the whole sample into several

subgroups. We use a summary to represent the data in each subsample, and then rank the

subsamples based on their corresponding summaries. The idea can also be described visually.

Given a sample of data with two dimensions, it can be shown as a square as Figure 2.

Figure 2

The first dimension of the data has four levels, and the second dimension has also four levels.

This sample of data can also be regarded as a two-way table, like the sales data example.
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Now if we want to order the first dimension, according to the four levels of the first dimension,

the square can be divided into four layers, each layer can be denoted as

(i, ·) , i = 1, 2, 3, 4

Here, · represents all the data of level i in the second dimension, so it also represents all the

data of level i in the whole sample since there are 2 dimensions in total in the data. For

example the first layer (1, ·) can be shown as the blue colored part in Figure 3.

Figure 3

To order the layers in the first dimension, we need to get a summary of each layer. The layers

of the first dimension (rows) can be represented as:

(i, ·) , i = 1, 2, 3, 4

For instance, let the average be the summary function, then the summary of each layer in

the first dimension can be denoted as:

mean(i, ·) , i = 1, 2, 3, 4

Similarly, the layers of second dimension (columns) can be denoted as

(· , j) , j = 1, 2, 3, 4
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And we need to calculate the summary of each layer to order them.

Next let’s think about data with three dimensions. It can be visually described as a cube,

see Figure 4.

Figure 4

The number of levels corresponding to the three dimensions are 4,2,3. Now the layers of the

first dimension are denoted as:

(i, ·, ·) , i = 1, 2, 3, 4

The first · corresponds to all the data of level i in the second dimension, the second · stands

for all the data of level i in the third dimension. All together, (i, ·, ·) stands for all the

data of level i in the whole sample. For example, (1, ·, ·) can be shown as the blue colored

part in Figure 5.

Then ordering the first dimension is to rearrange the four cuboids. Similarly, the layers of

the second dimension can be regarded as two cuboids in the cube, which are denoted as

(· , j, ·) , j = 1, 2

For example, the first layer (cuboid) is showed in Figure 6:
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Figure 5

Figure 6
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And the layers of the third dimension are denoted as

(· , · , k) , k = 1, 2, 3

Visually, (· , · , 1) can be shown as the blue colored part in Figure 7.

Figure 7

Spatially, ordering the layers of one dimension is ordering the cuboids in a cube.

Now let’s look at an example to see what reordering the layers means in R console layout.

HairEyeColor is a three-way table that contains hair and eye color and sex information of

592 statistics students.

HairEyeColor

## , , Sex = Male

##

## Eye

## Hair Brown Blue Hazel Green

## Black 32 11 10 3

## Brown 53 50 25 15
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## Red 10 10 7 7

## Blond 3 30 5 8

##

## , , Sex = Female

##

## Eye

## Hair Brown Blue Hazel Green

## Black 36 9 5 2

## Brown 66 34 29 14

## Red 16 7 7 7

## Blond 4 64 5 8

The first dimension is Hair color, the second dimension is Eye color and the third is Sex.

The first layer of the first dimension (Hair Color) (1, ·, ·) is all the data with Hair color =

Brown, which contains the first row of the first block and the first row of the second block.

Similarly, the second layer (2, ·, ·) is the second rows of two blocks. As for the second

dimension, the first layer contains the first column of the first block and the first column of

the second block. The first layer of the third dimension is the first block, and the second

layer is the second block.

orderDim() function can order the layers of a specific dimension. For example, for the

HairEyeColor example, ordering the first dimension will give the following result:

orderDim(HairEyeColor,dim=1)

## , , Sex = Male

##

## Eye

## Hair Brown Blue Hazel Green
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## Brown 53 50 25 15

## Blond 3 30 5 8

## Black 32 11 10 3

## Red 10 10 7 7

##

## , , Sex = Female

##

## Eye

## Hair Brown Blue Hazel Green

## Brown 66 34 29 14

## Blond 4 64 5 8

## Black 36 9 5 2

## Red 16 7 7 7

The rows are re-arranged; moreover, the rows of two blocks are rearranged together. So

overall, people with brown hair form the largest population in the sample. Then we continue

to order the second dimension,

orderDim(orderDim(HairEyeColor,dim=1), dim=2)

## , , Sex = Male

##

## Eye

## Hair Brown Blue Hazel Green

## Brown 53 50 25 15

## Blond 3 30 5 8

## Black 32 11 10 3

## Red 10 10 7 7
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##

## , , Sex = Female

##

## Eye

## Hair Brown Blue Hazel Green

## Brown 66 34 29 14

## Blond 4 64 5 8

## Black 36 9 5 2

## Red 16 7 7 7

The columns haven’t changed, so the original order is already in decreasing ranking. Lastly,

we order the third dimension,

orderDim(orderDim(orderDim(HairEyeColor,dim=1), dim=2),dim=3)

## , , Sex = Female

##

## Eye

## Hair Brown Blue Hazel Green

## Brown 66 34 29 14

## Blond 4 64 5 8

## Black 36 9 5 2

## Red 16 7 7 7

##

## , , Sex = Male

##

## Eye

## Hair Brown Blue Hazel Green
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## Brown 53 50 25 15

## Blond 3 30 5 8

## Black 32 11 10 3

## Red 10 10 7 7

The two blocks are re-arranged, so in this sample, there are more females than males.

In the orderDim() function, you can change the summary type, the examples we displayed

above use summary = mean. You can also specify which dimension to order by specifying

the dim parameter.

In the orderDim() function, the default order type (direction) is “decreasing”, following

Ehrenberg (1977)’s advice. He points out that “for the rows of a table, showing the larger

numbers above the smaller numbers helps because we are used to doing mental subtraction

that way.” For example,

450
320 compared to 320

450 .

It’s easier to mentally subtract 320 from 450 while we scanning down. With more digits, this

effect is even stronger:

447
318 compared to 318

447 .

Facilitating such mental arithmetic is important when one is scanning large sets of data.

The user can specify the order type as increasing if the user prefers, by setting the parameter

decreasing = FALSE.

2.4 Swap the dimensions

In tidytable package, swapping the dimensions is achieved by the function swap(). In Section

2.1, we have swapped the two dimensions in the sales data example. Let’s look at another

fictitious two-way table first:
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table5

## 1 2 3 4

## A 0.7999 0.7998 0.7998 0.7997

## B 3.7999 3.7824 3.7662 3.7223

## C 0.3000 1.2000 4.9000 145.7000

## D 20.7990 20.6990 20.8990 145.6990

## E 35.3000 34.5000 33.6000 34.7000

We notice that in some rows, the numbers are quite similar. If we swap the dimensions,

table5 becomes

swap(table5)

## $swappedTable

## A B C D E

## 1 0.7999 3.7999 0.3 20.799 35.3

## 2 0.7998 3.7824 1.2 20.699 34.5

## 3 0.7998 3.7662 4.9 20.899 33.6

## 4 0.7997 3.7223 145.7 145.699 34.7

##

## $newDimOrder

## [1] 2 1

The “swappedTable” is the table we get after swapping the dimensions of the original

table, “newDimOrder” records the re-ordered dimensions, so in this case the original second

dimension becomes the first dimension of the swapped table. Now the patterns become more

obvious, and the exceptions also stand out, such as the “145.699” in the fourth column and
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the third column overall. Ehrenberg (1977) explained “figures are easier to follow reading

down a column than across a row, especially for a larger number of items.” By arranging

the dimension with less variability as columns, people can scan down the columns to find

the patterns more easily, in other words, as Rule 3 says, “Figures are easier to compare in

columns, numbers that vary the least should appear in columns.”

In order to swap the dimensions, we need to compare the variability of different dimensions.

In the two-way table case, we need to compare the variability of the rows and thecolumns,

then set the dimension with less variability as the columns. We first need to figure out how to

summarize the variability of one dimension. Each dimension has several layers, each layer is a

subsample of data, as we explained before. So firstly we need to summarize each subsample’s

variability, we use layerSummary to denote the summary function to calculate each layer’s

variability. After getting the summary of each layer, we need to combine these summaries

to get the overall variability of the dimension, so here we need another summary function,

denoted as dimSummary. Then the variability of a dimension can be formulated as:

dimSummarym

(
layerSummaryn ( Xmn )

)
m = 1, ..., M, n = 1, ..., Nm

Here, Xmn is the nth element of the mth layer, M is the total number of layers in the dimension,

Nm is the total number of elements in the mth layer.

For two-way tables case, there are only two dimensions, so we only need to compare the

variability of rows and columns. For instance, the calculation of the rows’ variability can be

processed as in Figure 8:

Here (i, ·) can be visually shown as the sub-rectangle of a rectangle, as showed in Figure 9,

here we use the example of sales data, i.e. the 4×4 two-way table we introduced in Section 2.1.

We calculate the variability of the information in each sub-rectangle using layerSummary,

then combine these variabilities of sub-rectangles to get the variability of the whole rectangle

using dimSummary, we can obtain the variability of the rows. This gives you a visually idea

of the above process in Figure 8.
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Figure 8

(a) (b) (c) (d)

Figure 9

Similarly, we can calculate the columns’ variability. Then if the rows’ variability is smaller

than the columns’, swap rows and columns; otherwise, keep the original dimensions setting.

In statistics, there are some quantities to measure the variability, such as variance, standard

deviation, range etc. Since the data in the table sometimes might include extreme values, a

robust statistical quantity is needed to measure the variability. In our package, we use mad

(median absolute deviation) to be the layerSummary and median to be dimSummary. The

mad is a very robust measure of variability. Let x1, x2, ..., xn be a dataset, then the mad is

defined as the median of the absolute deviations from the data’s median:

mad = mediani(|xi −medianj(xj)|)

The user can specify the layerSummary by valueFun parameter and specify the

dimSummary by chooseFun parameter in the function swap().

In order to better illustrate the variability of a dimension, here we use the example of the

sales data. (Here we use layerSummary = mad, dimSummary = median)
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sales

## Q1 Q2 Q3 Q4

## North 97.62 92.24 100.90 90.39

## South 48.29 42.31 49.98 39.09

## East 75.23 75.16 100.11 74.23

## West 49.69 57.21 80.19 51.09

First we calculate the variability of the first dimension, the mad values of each row are as

follows:

mad(sales[1,])

## [1] 5.359599

mad(sales[2,])

## [1] 5.685771

mad(sales[3,])

## [1] 0.7413

mad(sales[4,])

## [1] 5.574576

The above results are variability of each layer, then we combine them together using the

median:
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median(c(mad(sales[1,]),mad(sales[2,]),mad(sales[3,]),mad(sales[4,])))

## [1] 5.467088

So the variability of the first dimension is 5.467088. Similarly, we can calculate the variability

of the second dimension:

median(c(mad(sales[,1]),mad(sales[,2]),mad(sales[,3]),mad(sales[,4])))

## [1] 22.16116

The variability of the second dimension is 22.16116, which is larger than that of the first

dimension, so we should swap the two dimensions to let the dimension with less variability

be columns (second dimension).

2.4.1 Swap dimensions of high-dimensional data

For multi-way tables with D(>= 3) dimensions, swaping the dimensions is not as simple as

ordering the dimensions based on their variabilities. We need to consider the multi-way table

layout on screen. For example, in the R console, we have got an initial idea about multi-way

table layout from the three-way table HairEyeColor example, in Section 2.3. Let’s look at the

example of a four-way table, Titanic, which records the survival of passengers on the Titanic.

Titanic

## , , Age = Child, Survived = No

##

## Sex

## Class Male Female

## 1st 0 0

29



## 2nd 0 0

## 3rd 35 17

## Crew 0 0

##

## , , Age = Adult, Survived = No

##

## Sex

## Class Male Female

## 1st 118 4

## 2nd 154 13

## 3rd 387 89

## Crew 670 3

##

## , , Age = Child, Survived = Yes

##

## Sex

## Class Male Female

## 1st 5 1

## 2nd 11 13

## 3rd 13 14

## Crew 0 0

##

## , , Age = Adult, Survived = Yes

##

## Sex

## Class Male Female

## 1st 57 140
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## 2nd 14 80

## 3rd 75 76

## Crew 192 20

There are four dimensions in this data: Class, Sex, Age, Survived, the corresponding numbers

of layers are (4, 2, 2, 2). Class is the first dimension and Sex is the second dimension, so in

each block (i.e. each 4× 2 two-way table), the rows are Class information and the columns

are the Sex information. For each layer of the first dimension, say the first layer, i.e. the 1st

class, it contains all the information recorded on the first row of each block. Similarly, for

the second dimension (the columns), the female survival information consists of the second

columns of each block. The third dimension is Age, with two layers, child and adult; all the

information of child is stored in the first and third blocks, and all information of adult is

in the second and fourth blocks. The last dimension is Survived, Yes or No. The first two

blocks of the table record the information of survived=Yes, and the last two blocks record

the information of survived=No.

Generally, we can see that the rows and columns are two dimensions which can be compared

the easiest, since they are showed on each block, we can read down the blocks naturally

to compare the figures. Within the first two dimensions, again, the columns are easier to

compare than the rows, as Rule 3 says. The third dimension is easier to compare than the

fourth dimension, since the information of different layers in the third dimension is put closer

than in the fourth dimension. By other multi-way table examples, we could arrive at a similar

conclusion: the first two dimensions have the most beneficial positions to find the patterns,

and columns are easier to be compared than rows; for those dimensions whose order are > 2,

the smaller the order is, the more visualization convenience.

When dealing with multi-way tables, we created a series of swapping principles as follows:

• Firstly, get all the two-dimensional combinations of all D dimensions, the number

of two-dimensional combinations is
(

D
2

)
. Then calculate the variability of each two-
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dimensional combination. The two-dimensional combination with the least variability

should be the first two dimensions of the swapped table, we denote them as i, j. Here

we don’t decide which of i and j should be columns, we leave this as the last step.

• Secondly, we decide on the left D − 2 dimensions according to the variabilities of

three-way dimension combinations. These combinations is constructed by the already

decided first two dimensions i, j and each of the remaining D − 2 dimensions, so

totally
(

D−2
1

)
= D − 2 combinations. Then we calculate the variability of each of these

three-dimension combinations and find the combination with the least variability. Then

in this three-dimensional combination, the dimension except for i and j will be the

third dimension of the swapped table, denoted as k. Similarly, we determine the fourth

dimension by picking the combination with the least variability from those four-way

dimension combinations constructed by the first 3 dimensions i, j ,k and each of the left(
D−3

1

)
= D− 3 dimensions. We follow this way to determine the order of the remaining

dimensions .

• Lastly, after having decided the general order of all the dimensions, we come back to

decide about the order within the first two dimensions, i.e. which one is the columns and

which one is the rows. For each one of the first two dimensions i and j, we consider the

combination of it with the left D − 2 dimensions, which combination has the smallest

variability, then the corresponding dimension will be the columns (i.e. the second

dimension), the other one will be the rows (i.e., the first dimension).

We decide the above swapping principles also based on considerations as follows:

As we illustrated in Section 2.3, for each dimension of a table, it contains several layers. We

need to combine the variability of each layer to get an overall measure of the variability of

one dimension, which can be described as follows:

dimSummarym

(
layerSummaryn ( Xmn )

)
m = 1, ..., M, n = 1, ..., Nm
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We have shown the process of calculating the variability in a two-way table case. Now in

the multi-way table case, we first consider the three-way table case. The layers of the first

dimension can be shown as follows, where I is the total number of layers (levels) in the first

dimension.

(i, ·, ·) , i = 1, 2, ..., I

Then the layers of the second dimension can be shown as follows, where J is the total number

of layers (levels) in the second dimension.

(· , j, ·) , j = 1, 2, ..., J

The layers of the third dimension can be shown as follows, where K is the total number of

layers (levels) in the third dimension.

(· , · , k) , k = 1, 2, ..., K

For instance, the variability calculation of the third dimension can be processed as Figure 10:

Figure 10

We use the example we shown in Section 2.3 to give you a visual idea of the above process.

The three-way table has three dimensions with corresponding number of levels is (4,2,3), it

can be showed as a three-dimensional space as Figure 4.

For instance, in order to calculate the variability of the third dimension in this table, we

first calculate the variability of the first layer, i.e. shaded area of Figure 11(a), denoted
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as layerSummary1; then calculate the variability of the second layer, which is the shaded

area in Figure 11(b), is denoted as layerSummary2; and the variability of the third layer,

layerSummary3, corresponding to data in shaded area of Figure 11(c). Then the variabil-

ity of the third dimension is the dimSummary of layerSummary1, layerSummary2 and

layerSummary3.

(a) (b) (c)

Figure 11

When there are more than 2 dimensions in the table, considering only the variability of one

dimension is not enough. Since the dimensions are usually combined together to determine

the final display of numbers in the table. So when we arrange the order of dimensions, we

need to consider the variability of a combination of several dimensions. For example, for a

four-dimensional table, if we want to calculate the variability of two dimensions’ combination,

say the second and the fourth dimension, the process can be described as in Figure 12. Here,

there are J layers in the second dimension and L layers in the fourth dimension, so the

combination of these 2 dimensions has I ∗ J layers.

Here we use a four-dimensional data example to give a visual display of how to calculate

the variability of combination of dimensions. A four-way table can be displayed as a four-

dimensional space in Figure 13. As last example, the first, second, third dimension has 4, 2,

3 layers. There is also the fourth dimension with 2 layers, and each layer is a cube.

Now let’s consider the combination of the second and fourth dimension. Since the second

dimension has 2 layers and the third dimension has 2 layers, the combination of these 2
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Figure 12

Figure 13
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dimensions should have 4 layers. They are shown as (a), (b), (c) and (d) in the Figure 14, as

the shaded area. Then the variability of the combination of dimension 2 and 4 should be the

dimSummary of the four layers’ layerSummary values.

(a) (b)

(c) (d)

Figure 14

Generally, in a high-dimensional data set, the layers of the pth dimension could be denoted as:

(..., ·, q, ·, ...) , i = 1, 2, ..., Q

Here Q is the total number of layers in the pth dimension. “. . . ” represents all the information

of those dimensions before q−1 dimension and after q+1 dimension, actually “. . . ” represents

those omitted · s.

The variability calculation of the pth dimension can be generalized as in Figure 15.
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Figure 15

The variability calculation of the combination is quite similar to the variability of one

dimension, but here each layer is denoted by a combination of dimension levels. For the

combination of n dimensions, the number of layers of that combination is

n∏
i=1

Qi

where Qi is the total number of layers of the ith dimension in the combination. For example,

we want to calculate the variability of three dimensions pi, pj and pk, we could generalize

the calculation process as Figure 16, where the Qi, Qj and Qk are the corresponding total

number of layers of the dimensions pi, pj and pk..

In the swap() function, there is a parameter setting: preserveF irst2dim, if the user wants

to set the first two dimensions as those two he/she prefers, then by setting this parameter as

a vector of the two dimensions’ numbers, the user can make sure that in the final result, each

block of the table will show those 2 dimensions. For example, set preserveF irst2dim = c(1, 3),

then the first and the third dimensions of the original table will be the first two dimensions

of the swapped table.

Now let’s look at Titanic example to show how swap() works for multi-way tables.
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Figure 16

swap(Titanic)

## $swappedTable

## , , Survived = No, Age = Child

##

## Class

## Sex 1st 2nd 3rd Crew

## Male 0 0 35 0

## Female 0 0 17 0

##

## , , Survived = Yes, Age = Child

##

## Class

## Sex 1st 2nd 3rd Crew

## Male 5 11 13 0

## Female 1 13 14 0
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##

## , , Survived = No, Age = Adult

##

## Class

## Sex 1st 2nd 3rd Crew

## Male 118 154 387 670

## Female 4 13 89 3

##

## , , Survived = Yes, Age = Adult

##

## Class

## Sex 1st 2nd 3rd Crew

## Male 57 14 75 192

## Female 140 80 76 20

##

##

## $newDimOrder

## [1] 2 1 4 3

After swapping, the swapped table put similar numbers closer, such as the first two blocks

and the last two blocks.

2.5 Focus the table and present

After getting location, ordering and swapping, now it’s time to think about how to summarize

all these results onto the final table.

Recall Rule 1 in the introduction, “reduce number of digits, usually round to two significant

or efficient digits for mental arithmetic”. By finding and removing the location, we have
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partly achieved the digit reduction. We keep the digits during the intermediate analysis

due to the accuracy considered, but when it comes to show the final report to the reader,

numbers in the table shouldn’t hold the long digits anymore. Ehrenberg (1977) explains that

“Understanding any set of numbers involves relating the different numbers to each other. For

example, mentally subtracting the 330.9 from 597.9 and remembering the answer is relatively

difficult. Taking ratios mentally (330.9 into 597.9) is virtually impossible. Most of us can

do such mental arithmetic only by first rounding the figures to one or two digits in our

heads. The general rule is to round to two significant or effective digits, where ‘significant’ or

‘effective’ here means digits that vary in that kind of data. (Final 0’s do not matter as the

eye can readily filter them out.)” In this paper, Ehrenberg also provides a discussion about

the objections of rounding to two digits and gives the proof that why two significant digits is

better.

However, summarizing the data is not as simple as only rounding to two significant or efficient

digits. The magnitude range needs to be considered here, and we also need to avoid showing

scientific notations and non-integer numbers in the table. Let’s look at several examples to

illustrate the problems.

table6

## [,1] [,2] [,3] [,4]

## [1,] 97623 92243 100906 90397

## [2,] 48296 42317 49983 39097

## [3,] 75238 75162 100116 74235

## [4,] 49699 57212 80196 51092

table6 has many digits, by rounding to 2 digits, it becomes:
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table6_2digits

## [,1] [,2] [,3] [,4]

## [1,] 98000 92000 1e+05 90000

## [2,] 48000 42000 5e+04 39000

## [3,] 75000 75000 1e+05 74000

## [4,] 50000 57000 8e+04 51000

Now the table numbers has many zeros in the tail and there are some scientific notations in

the table.

For those numbers with long digits, after rounding to two significant or efficient digits, the

digits in the tail will be rounded to zeros. Although as Ehrenberg (1977) says, “final 0’s do

not matter as the eye can readily filter them out”, but too many zeros showed on the table

will looks messy, moreover, there may be not enough space to present those interminable

zeros, then scientific notations may happens here. Scientific notation is a interruption when

it’s shown on the table. For example, a fictitious two-way table based on the sales data

example is as follows.

Table 6

Q1 Q2 Q3 Q4
North 98 92 100 90
South 48 42 50 39
East 75 75 7e + 05 74
West 50 57 80 51

The appearance of scientific notations abruptly interrupt us no matter when we scan down

the column or scan across the row, or look through the numbers in the table. Because we

need to stop for a while, look carefully about those two numbers before and after “e”, i.e. the

coefficient and the exponent, to know what exactly the number is. Scientific notations are
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really neat when presenting some long digit numbers, but when people want to quickly look

through a group of numbers and get a general idea about the data, it’s really a obstacle. If

there are more than one scientific notation in the table, the situation will be worse, just as

the above table6_2digits example.

Of course, we could change the print setting in order to not show the scientific notations, for

example, in R, the “scipen” parameter in options() function controls the scientific notation

expression. The default of “scipen” is zero, which allows less than or equal to four zeros

shown in the tail of a number. For example, 20000 can be printed as it is, but 200000 will be

printed as scientific notation 2e+05. Adding one to the “scipen” parameter will allows one

more zero to be printed without scientific notation.

But in this case, there are some common zeros in the tail, which can be extracted out of the

table. For example, in this case, we can extract three zeros in the tail, the table6_2digits

then becomes

table6_2digits/1000

## [,1] [,2] [,3] [,4]

## [1,] 98 92 100 90

## [2,] 48 42 50 39

## [3,] 75 75 100 74

## [4,] 50 57 80 51

Now there are no longer scientific notations in the table, and the “1000” can be recorded as

the unit of the table. By this way, the real table numbers won’t be affected but the layout is

much tidier, the readers can focus more on the non-zero digits and mentally relate different

numbers more easily, so it’s easier for the reader to find patterns.

Now let’s look at another example to illustrate another problem.
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Recall the table2 we have seen in Section 2.2

table2

## [1] 0.7999 0.7998 0.7998 0.7997

After getting and removing the location 0.799, table2 becomes

table2 - getLocation(table2)

## [1] 0.0009 0.0008 0.0008 0.0007

Now there is only one significant digit in table, so we don’t need to round it anymore. It

seems fine, but when we try printing it, the result is showed as Table 7.

Table 7

0.000900000000000012
0.000799999999999912
0.000799999999999912
0.000699999999999923

That’s the problem of machine floating point storage, which is inevitable. We have discussed

this problem in Section 2.2. To deal with this problem, we try to transform the decimal

numbers into integers. By extracting a unit as 10ˆ{-4}, the table becomes:

(table2 - getLocation(table2))*10^4

## [1] 9 8 8 7
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So when dealing with non-integers in the tables, we try to transform them to integers by

using a unit in case those non-integers will be shown as ugly long floating points like Table 7.

Now let’s look at another example.

table7

## [,1] [,2] [,3] [,4]

## [1,] 1.2345e-05 20 1.2345e-05 20

## [2,] 2.0000e-03 34 2.0000e-03 34

## [3,] 3.3000e+00 20000 3.3000e+00 20000

## [4,] 4.0000e+00 300000 4.0000e+00 300000

table7 includes numbers with large magnitude range, for example, 1.2345e-05 and 3000000,

so there are some scientific notations in the table and the table looks very messy. By rounding

to 2 significant digits, table7 becomes:

table7_2digits

## [,1] [,2] [,3] [,4]

## [1,] 1.2e-05 20 1.2e-05 20

## [2,] 2.0e-03 34 2.0e-03 34

## [3,] 3.3e+00 20000 3.3e+00 20000

## [4,] 4.0e+00 300000 4.0e+00 300000

Now the situation becomes better but it’s still messy with so many scientific notations. Notice

in this case, there are both small numbers as 1.2e-05 and large numbers as 300000 shown

in the table. If we want to construct the unit based on smaller numbers in the table, say

10ˆ{-6)} as the unit, then the table becomes
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table7_2digits*10^6

## [,1] [,2] [,3] [,4]

## [1,] 12 2.0e+07 12 2.0e+07

## [2,] 2000 3.4e+07 2000 3.4e+07

## [3,] 3300000 2.0e+10 3300000 2.0e+10

## [4,] 4000000 3.0e+11 4000000 3.0e+11

Now the small numbers (non-integers) became integers, so we don’t need to worry about the

floating point storage problems as we illustrated above. But the large numbers will have too

many zeros with the unit 10ˆ(-6), 300000 becomes 300000000000, scientific notation as 3e+11

is inevitable. Even if we could change the “scipen” setting in options() to avoid scientific

notation, there are still too many zeros.

op<-options("scipen")

options("scipen"=7)

table7_2digits*10^6

## [,1] [,2] [,3] [,4]

## [1,] 12 20000000 12 20000000

## [2,] 2000 34000000 2000 34000000

## [3,] 3300000 20000000000 3300000 20000000000

## [4,] 4000000 300000000000 4000000 300000000000

options(op)

Imagine an extreme example that there is a number with 20 zeros in the table, do you still

want to print it by setting the “scipen” parameter?
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If we choose a unit considering the large numbers, for example in this case 10ˆ1 as the unit

to avoid scientific notations without setting the “scipen” parameter, and round the table in

order to avoid non-integers. The table now becomes

round(table7_2digits/10^1)

## [,1] [,2] [,3] [,4]

## [1,] 0 2 0 2

## [2,] 0 3 0 3

## [3,] 0 2000 0 2000

## [4,] 0 30000 0 30000

Then many numbers (8 of 16) are rounded to zeros, we lose too much information in this way.

Therefore, when the magnitude range of table numbers is large, it’s usually hard to consider

both large numbers and small numbers. In this case, we need to sacrifice some information by

focusing on the majority of the table. Here “majority”" means the majority of the numbers’

magnitude. We construct the unit based on the majority of the numbers’ magnitude, so most

of the numbers on the level of major magnitude will be shown on the table, then the smaller

numbers will be rounded to zeros and the larger number will end up with lots of zeros in the

tail or the scientific notations. Then we could suggest a “scipen” setting to make those larger

numbers be shown normally, without scientific notations.

Now we use table7_2digits to illustrate the above ideas. Let’s first look at the scientific

notation coefficients and exponents of table numbers:

SciNotation(table7_2digits, ndigits=2)

## $coefficient

## [,1] [,2] [,3] [,4]
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## [1,] 1.2 2.0 1.2 2.0

## [2,] 2.0 3.4 2.0 3.4

## [3,] 3.3 2.0 3.3 2.0

## [4,] 4.0 3.0 4.0 3.0

##

## $exponent

## [1] -5 -3 0 0 1 1 4 5 -5 -3 0 0 1 1 4 5

The maximum exponent is 5, and the minimum is -5, so the magnitude range is 10, which

is pretty large. In order to measure the majority of the exponents, we need a threshold,

denoted as expsRange. Then we starts from the minimum exponent, -5, and we count how

many exponents are within [−5,−5 + expsRange] in the table. For example, here we use

expsRange = 1. Then there are 2 exponents in total, which are within [-5, -4], , i.e. -5 and

-5. Then we continue with add 1 to both sides of the interval, i.e. [-4, -3], then there are 2

exponents within this range, i.e. -3 and -3. Continue this process until the right handside

of the interval reaches the maximum exponent, i.e. 5 in this case, the results are listed as

follows.

Then the interval [0,1] has the maximum count (8) of table numbers’ exponents, which is

what we called “majority of the numbers’ magnitude”. Then we construct the unit based on

this interval, in this case, we set the interval as 10ˆ{-1}, so the table now becomes.
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## [,1] [,2] [,3] [,4]

## [1,] 1.2e-04 200 1.2e-04 200

## [2,] 2.0e-02 340 2.0e-02 340

## [3,] 3.3e+01 200000 3.3e+01 200000

## [4,] 4.0e+01 3000000 4.0e+01 3000000

Then we round the table to avoid decimal digits, the table becomes

## [,1] [,2] [,3] [,4]

## [1,] 0 200 0 200

## [2,] 0 340 0 340

## [3,] 33 200000 33 200000

## [4,] 40 3000000 40 3000000

We sacrifice some information, such as four numbers are rounded to zeros in this case, but

the large numbers are shown with acceptable number of zeros in the tail.

The complete output if applying focusTable() on table7 is as follows:

focusTable(table7)

## $table

## [,1] [,2] [,3] [,4]

## [1,] 0 200 0 200

## [2,] 0 340 0 340

## [3,] 33 200000 33 200000

## [4,] 40 3000000 40 3000000

##

## $base
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## [1] -1

##

## $scipen

## [1] 2

Here, $table is the one we will print in the final tidy table report, which has been rounded

to required number of significant digits by setting nSig parameter in focusTable() function;

$base is the number we use to construct the unit of $table, unit = 10base; $scipen is our

suggested “scipen” setting in options() function, to print the table without scientific notations.

In some extreme cases, after using the focusTable() function, maybe there are still some

pretty large numbers with lots of zeros in the tail, we can’t rule out this situation, but we

have tried to avoid this by sacrificing some information as showed above.

Now let’s look at some other examples of focusTable():

table8

## [,1] [,2] [,3] [,4]

## [1,] 0.12345 20.3 0.12345 20.3

## [2,] 2.00000 34.5 2.00000 34.5

## [3,] 3.30000 200.0 3.30000 200.0

## [4,] 4.00000 3000.0 4.00000 3000.0

focusTable(table8)

## $table

## [,1] [,2] [,3] [,4]

## [1,] 1 200 1 200

## [2,] 20 350 20 350
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## [3,] 33 2000 33 2000

## [4,] 40 30000 40 30000

##

## $base

## [1] -1

##

## $scipen

## [1] 0

table9

## [,1] [,2] [,3] [,4]

## [1,] 1 203 1 203

## [2,] 20 345 20 345

## [3,] 33 2000 33 2000

## [4,] 40 30000 40 30000

focusTable(table9)

## $table

## [,1] [,2] [,3] [,4]

## [1,] 1 200 1 200

## [2,] 20 350 20 350

## [3,] 33 2000 33 2000

## [4,] 40 30000 40 30000

##

## $base

## [1] 0
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##

## $scipen

## [1] 0

table10

## , , k1

##

## j1 j2 j3 j4

## i1 5e+05 50000 500 5000

## i2 9e+05 90000 900 9000

## i3 2e+05 20000 200 2000

## i4 8e+05 80000 800 8000

##

## , , k2

##

## j1 j2 j3 j4

## i1 7e+09 800 6000 4e+07

## i2 4e+09 300 8000 9e+07

## i3 2e+09 700 2000 3e+07

## i4 5e+09 100 9000 1e+07

focusTable(table10)

## $table

## , , k1

##

## j1 j2 j3 j4
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## i1 5000 500 5 50

## i2 9000 900 9 90

## i3 2000 200 2 20

## i4 8000 800 8 80

##

## , , k2

##

## j1 j2 j3 j4

## i1 7e+07 8 60 4e+05

## i2 4e+07 3 80 9e+05

## i3 2e+07 7 20 3e+05

## i4 5e+07 1 90 1e+05

##

##

## $base

## [1] 2

##

## $scipen

## [1] 3

The function focusTable() is designed to provide the elements needed when present the final

table. In summary, “focus” has several meanings:

• Focus on the significant digits.

• Focus on the non-zero digits.

• Focus on the majority of the table numbers

• Focus on the integers
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There are two significant digits in the focusTable() function, nSig and expsRange. nSig

controls how many significant digits to be shown in the table, the default is 2; expsRange is

the threshold we use to determine the majority of magnitude, the default is nSig − 1. The

user can specify these parameters based on their preference.

3 Tidy up the table and print the tidy table

The functions we have introduced in the Section 2 are like the parts of a machine. With these

parts ready, now we can assemble the machine. Recall the Figure 1 of the general structure

of tidy table analysis, we just follow the order shown on Figure 1 to construct the tidytable()

function. Let’s first look at the example we showed in Table 1 in the Section 2.1 to see how

the tidytable() works.

tidytable(Table1)

## $table

## North East West South

## Q3 100 100 80 50

## Q1 98 75 50 48

## Q2 92 75 57 42

## Q4 90 74 51 39

##

## $units

## [1] 1

##

## $location

## [1] 4102000

##

53



## $nSig

## [1] 2

##

## $scipen

## [1] 0

##

## $newDimOrder

## [1] 2 1

##

## $originalTable

## Q1 Q2 Q3 Q4

## North 4102098 4102092 4102101 4102090

## South 4102048 4102042 4102050 4102039

## East 4102075 4102075 4102100 4102074

## West 4102050 4102057 4102080 4102051

The first element of the output $table is the tidy table we finally get; the second element

$unit is the unit of the tidy table; the third element of the output is the location of the

original table; $nSig records the number of significant digits we have set in the tidytable();

$newDimOrder records the dimensions’ order after swapping, we have introduced this in

Section 2.4. Last but not least, the original table is also shown in the output as $originalTable,

here the decimal digits of Table 1 hasn’t been shown in the $originalTable, that’s because

the default number of digits is 7 in R, so the decimal digits have been rounded.

In the function tidytable(), you can choose to only do a part of the steps shown in Figure 1 by

setting the related parameters. You can also choose to only order some of the dimensions of

the original table by specifying the parameter fixedOrderDims. For example, the example

Table 1, we want to order the first dimension, areas, but we don’t want to order the second
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dimension, quarters, to keep a chronological order. By setting the fixedOrderDims = c(2),

which means we want to fix the order of the second dimension, then the tidy table is

tidytable(Table1, fixedOrderDims=c(2))$table

## North East West South

## Q1 98 75 50 48

## Q2 92 75 57 42

## Q3 100 100 80 50

## Q4 90 74 51 39

This time the second dimension of the original table hasn’t been changed, which is still “Q1,

Q2, Q3, Q4”.

Let’s then look at the three-way table HairEyeColor we introduced before.

tidytable(HairEyeColor)

## $table

## , , Eye = Brown

##

## Hair

## Sex Brown Blond Black Red

## Female 66 4 36 16

## Male 53 3 32 10

##

## , , Eye = Blue

##

## Hair
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## Sex Brown Blond Black Red

## Female 34 64 9 7

## Male 50 30 11 10

##

## , , Eye = Hazel

##

## Hair

## Sex Brown Blond Black Red

## Female 29 5 5 7

## Male 25 5 10 7

##

## , , Eye = Green

##

## Hair

## Sex Brown Blond Black Red

## Female 14 8 2 7

## Male 15 8 3 7

##

##

## $units

## [1] 1

##

## $location

## [1] 0

##

## $nSig

## [1] 2
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##

## $scipen

## [1] 0

##

## $newDimOrder

## [1] 3 1 2

##

## $originalTable

## , , Sex = Male

##

## Eye

## Hair Brown Blue Hazel Green

## Black 32 11 10 3

## Brown 53 50 25 15

## Red 10 10 7 7

## Blond 3 30 5 8

##

## , , Sex = Female

##

## Eye

## Hair Brown Blue Hazel Green

## Black 36 9 5 2

## Brown 66 34 29 14

## Red 16 7 7 7

## Blond 4 64 5 8

Compared with the original table, the tidy table has much clearer pattern, especially from

the third and fourth blocks of the tidy table, we can see the numbers on each column are
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pretty similar. You can continue to find other patterns if you are interested.

Next we look at the four-way table Titanic.

tidytable(Titanic)

## $table

## , , Survived = No, Age = Adult

##

## Class

## Sex Crew 3rd 1st 2nd

## Male 670 390 120 150

## Female 3 89 4 13

##

## , , Survived = Yes, Age = Adult

##

## Class

## Sex Crew 3rd 1st 2nd

## Male 190 75 57 14

## Female 20 76 140 80

##

## , , Survived = No, Age = Child

##

## Class

## Sex Crew 3rd 1st 2nd

## Male 0 35 0 0

## Female 0 17 0 0

##

## , , Survived = Yes, Age = Child
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##

## Class

## Sex Crew 3rd 1st 2nd

## Male 0 13 5 11

## Female 0 14 1 13

##

##

## $units

## [1] 1

##

## $location

## [1] 0

##

## $nSig

## [1] 2

##

## $scipen

## [1] 0

##

## $newDimOrder

## [1] 2 1 4 3

##

## $originalTable

## , , Age = Child, Survived = No

##

## Sex

## Class Male Female
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## 1st 0 0

## 2nd 0 0

## 3rd 35 17

## Crew 0 0

##

## , , Age = Adult, Survived = No

##

## Sex

## Class Male Female

## 1st 118 4

## 2nd 154 13

## 3rd 387 89

## Crew 670 3

##

## , , Age = Child, Survived = Yes

##

## Sex

## Class Male Female

## 1st 5 1

## 2nd 11 13

## 3rd 13 14

## Crew 0 0

##

## , , Age = Adult, Survived = Yes

##

## Sex

## Class Male Female
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## 1st 57 140

## 2nd 14 80

## 3rd 75 76

## Crew 192 20

tidytable() function mainly give us a list of results. We need to combine them together to

print the tidy table. Also notice here, in terms of multi-way table (number of dimensions

>= 3), we find the location, order, swap and find the unit all based on the whole table, but

not on each block. For example, the tidy table of the HairEyeColor example is as shown

above. The order of the first dimension Sex is Female, Male; but in the fourth block (, , Eye

= Green) it’s obvious that the average of the fist row (Female) is smaller than the second row

(Male). So we might be interested in finding the location, ordering, swapping and finding the

unit within each block of the tidy table we’ve already obtained.

showtidytable() gives the user the choices of locationType, orderType, swapType and

unitType, by setting these four parameters as “common” or “withinEachTwoWay”, we

can decide if we want to find the location, order, swap, or find the unit within each block of

the tidy table we have obtained. The user can also choose the display as “console” or “latex”

to print the tidy table in R console or latex. The “latex” option will give the latex code for

each separate block, and these latex codes of blocks will be transformed to a series of two-way

tables in the document (e.g. PDF file). Here is the example of Titanic when applying the

showtidytable().

showtidytable(Titanic,display="console",tableCaption="Titanic tidy table",

locationType="withinEachTwoWay",orderType="withinEachTwoWay",

swapType="withinEachTwoWay", unitType="withinEachTwoWay")

## Titanic tidy table

## Location: 0
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##

## , , Survived = No,Age = Adult

## Unit: 10

## Sex

## Class Male Female

## Crew 67 0

## 3rd 39 9

## 2nd 15 1

## 1st 12 0

##

## , , Survived = Yes,Age = Adult

## Unit: 1

## Sex

## Class Male Female

## Crew 190 20

## 1st 57 140

## 3rd 75 76

## 2nd 14 80

##

## , , Survived = No,Age = Child

## Unit: 1

## Sex

## Class Male Female

## 3rd 35 17

## Crew 0 0

## 1st 0 0

## 2nd 0 0
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##

## , , Survived = Yes,Age = Child

## Unit: 1

## Class

## Sex 3rd 2nd 1st Crew

## Male 13 11 5 0

## Female 14 13 1 0

Here although we choose locationType = ”withinEachTwoWay”, since the locations in each

block are the same, which is 0, so the location information are only printed once on top.

Similarly, if the units of each block are all the same, then there will only be an overall unit

information to be printed on top, even if unitType = ”withinEachTwoWay”.

By choosing any of the orderType and swapType as “withinEachTwoWay”, the tidy table

finally printed is not a strictly defined multi-way table since the first dimension may not be

the same among blocks. But it sill has other uniform dimensions except for the first two

dimensions, because we swap/order within blocks of the tidy table from tidytable(), the

general structure is the same as the tidy table, so it can be regarded as a generalized tidy

table.

4 Limitations and Future work

4.1 Application of the remaining rules

Up till now, our tidytable package has almost achieved the objective of table analysis based

on the Rule 1, Rule 2 and Rule 3 introduced in the Introduction part. However, other rules

still need to be further applied, for example:

• Rule 4: Use averages (or medians) to help focus the eye over the array.
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• Rule 5: Note dramatically exceptional values and exclude them from pattern summary

calculations.

• Rule 6: Avoid introducing new variables or scales (e.g. totals) whenever possible.

• Rule 7: Figures to be compared should be close together.

...

As for the Rule 4, Ehrenberg (1977) explains that it “concerns the use of row and column

averages to provide a visual focus and a possible summary of the data.” In the paper

Extracting Sunbeams From Cucumbers (2011), Feinberg & Wainer mentioned that “In most

tables it is usually useful, and often critical, to surround the table with some kind of summary

statistics. Sometimes these are sums, sometimes means, but most often medians have proven

to be the summary of choice. The characteristic that makes medians especially useful is their

insensitivity to unusual data points. Thus the median can represent the mass of points and

when we look at deviations from medians unusual points will have large residuals.” So we

need to further think about and design an appropriate way to generate and display these

table summaries.

As for Rule 7, spacing and layout can improve the visualization efficiency. Placing is

particularly effective in making the eye read down columns. But there are also need to be

deliberate gaps to guide the eye across the table. However, compared with other rules, this

rule is harder to be achieved automatically. What’s more, as Ehrenberg (1977) mentioned,

“many typists, printers and computers are programmed differently. Double spacing in tables

is common, as are columns spaced unevenly according to the width of the headings, and

occasional irregular gaps between single-spaced rows because some row captions ran to two

lines. One needs not only good typists or printers, but also thoughtful control of these

facilities.” In order to apply this rule, we need to further learn and know more about different

softwares, computers’ and typists’ settings, create a well-designed way to achieve table

visualization benefits.
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In summary, we just started the analysis of multi-way tables, there are many other rules to

be considered. We will continue to explore those rules and try to make the tidytable package

more complete gradually.

4.2 R contingency table layout

During the analysis of our tidytable package, we mainly considered the R console layout

of multi-way table, there is a ftable() function in stats package to produce multi-way ‘flat’

contigency tables. For example, the Titanic example can be shown as a contigency table as

follows:

ftable(Titanic, row.vars = 1:2)

## Age Child Adult

## Survived No Yes No Yes

## Class Sex

## 1st Male 0 5 118 57

## Female 0 1 4 140

## 2nd Male 0 11 154 14

## Female 0 13 13 80

## 3rd Male 35 13 387 75

## Female 17 14 89 76

## Crew Male 0 0 670 192

## Female 0 0 3 20

By setting the parameter row.vars and col.vars, we can choose vraibles to be shown on the

rows and on the columns. This seems to give us more flexibility of the table layout. If we

want to apply those table visualization rules to this type of contigency tables, how to ordering

within the dimensions and swapping among dimensions need to be well-considered to adapt

to the new layout way of tables.
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