
A review and implementation of some

approaches to metric clustering

Wu Zhou

Dec 14, 2004

Contents

1 Introduction 4

2 Multidimensional scaling 5

2.1 Metric multimensional scaling 6

2.1.1 Principal coordinates analysis (classical MDS) 6

2.1.2 Least squares scaling 9

2.1.3 Algorithm . 11

2.2 Non-metric Multidimensional Scaling 12

2.2.1 Ensuring monotonicity 13

2.2.2 Steepest Descent Procedure 14

2.2.3 Algorithm . 15

3 Clustering methods 17

3.1 Partitioning methods . 18

3.1.1 Clusters represented by their means 18

3.1.2 Clusters represented by their medoids 19

3.1.3 PAM with sampling 22

3.2 Hierarchical methods . 25

3.2.1 Clustering using the Clustering Feature 27

3.2.2 Clusters represented by multiple representatives 31

3.2.3 Clustering by a dynamical model 33

3.3 Density based clustering methods 37

3.3.1 Finding clusters by a global density level 38

3.3.2 Finding clusters from an ordered density-based clus-

tering structure . 44

3.3.3 Runt pruning density based clustering 50

4 Conclusion 58

1 Introduction

Given so many databases which are used in the real world and a huge amount

of information which is generated and communicated through the Internet

every day, it is easy to image that we are living in a digital world. This explo-

sive growth in data and databases has dramatically increased the demand for

data mining. Data mining focuses on using efficient techniques and tools to

discover useful information and knowledge from data. Among various data

mining techniques, cluster analysis or unsupervised learning is an interesting

and fast growing topic.

Cluster analysis methods try to find groups or clusters of data objects in the

data set. A cluster is a maximal collection of similar data objects so that

the purpose of a clustering method is to assign data objects similar to one

another to the same cluster and objects dissimilar to different clusters.

Existing clustering methods fall into five general categories: partitioning

methods, hierarchical methods, density-based methods, grid-based methods

and model-based methods. My research work focuses on the first three cat-

egories.

Generally, there are two types of attributes involved in the data to be clus-

tered: metric and nonmetric. If all the data attributes are metric, a data

object can be represented by a vector in the metric space. A metric space is a

set S with a global distance function (the metric g) that, for every two points

x, y in S, gives the distance between them as a nonnegative real number

g(x, y). A metric space must also satisfy:

1. g(x, y) = 0 iff x = y

2. g(x, y) = g(y, x)

3. The triangle inequality: g(x, y) + g(y, z) ≥ g(x, z)

4

In this paper, I am interested in the clustering approaches to group data in

metric spaces. In a metric space, the elements in a data vector can be formed

by the value of each attribute. If the number of attributes in a data set is m,

the dimension of the data vectors is also m. We can say the data come from

the m-dimension metric space. Besides, the data set can be represented by

an n by m matrix, if the number of objects in the data set is n.

In many clustering problems, we do not have metric data attributes. For

example, we only have the dissimilarities between data objects. The dissim-

ilarity between two data objects can be metric or nonmetric. To obtain data

in the metric space from these dissimilarities, a possible solution is multidi-

mensional scaling (MDS). Besides, MDS can be used to transfer data from

a higher dimensional metric space, say m-dimension, to a lower dimensional

metric space, say p-dimension, where p < m.

This paper is organized as follows: In Section 2, I discuss MDS, in Section

3, I discuss some approaches to partitioning, hierarchical, and density-based

clustering. Section 4 gives the conclusion. In Appendix, I give the codes to

implement some methods in MDS and density based clustering.

2 Multidimensional scaling

Multidimensional scaling (MDS) was proposed to solve the problem of finding

a proper configuration of points given some measurements of dissimilarities

between objects. Given a set of objects and a function δrs which gives the

dissimilarity between objects r and s in the set, the goal of multidimensional

scaling is to find coordinates xr and xs in the metric space such that, one of

the following two conditions must be satisfied.

• If δrs satisfies the triangle inequality, the Euclidean distances drs be-

5

tween these coordinates match or nearly match the original dissimilar-

ities. This is the metric MDS.

• If δrs is an unknown monotonic increasing function δrs = f(drs), Where

drs is the Euclidean distance between objects r and s. The rank order

of Euclidean distances d∗rs between objects r and s in the new config-

uration match the original rank order of dissimilarities δrs, no matter

δrs satisfies the triangle inequality or not. This is the nonmetric MDS.

Since MDS can find a new configuration of points in the lower dimensional

space with only a little loss of information, it could be employed in the

applications which require lower dimensional data sets.

2.1 Metric multimensional scaling

The purpose of the metric MDS is to find a new configuration (or coordinates)

probably in a low dimensional space, such that the Euclidean distance of any

pair of the new coordinates closely approximates the prescribed value. For

example, how can we draw a map of Canada if we only know the distances

between all pairs of Canadian cities?

To complete the metric MDS, a principal coordinates analysis is employed

first to find a new configuration from the given dissimilarity matrix. Then, a

least squares scaling is applied afterwards to minimize the disparities between

the original data’s dissimilarities and the new configuration’s dissimilarities.

2.1.1 Principal coordinates analysis (classical MDS)

Let f = (xrj) be the actual coordinates of n points in the m dimensional

space, where r = 1, 2, · · · , n, j = 1, 2, · · · ,m. Let D = (drs) to be the n × n

6

matrix of Euclidean distances between each pair of points. If defineDrs = d2
rs,

then

Drs =
m∑

j=1

(xrj − xsj)
2. (1)

In order to find X from D, define another n × n matrix B = (brs), where

B = XXT . Therefore,

brs =
m∑

j=1

xrjxsj. (2)

Since we can write D in terms of B,

Drs = brr + bss − 2brs, (3)

X can be solved by finding B from D first, then factoring it in the form

B = XXT .

There are many more unknowns than equations which relate them. To obtain

the unique solution when finding B from D, one possible way is to add m

location constraints, which are,

n∑

r=1

xrj = 0 ∀j. (4)

Since the rows and columns of B add up to 0, we have,

n∑

r=1

Drs = tr(B) + nbss,

n∑

s=1

Drs = nbrr + tr(B),

7

n∑

r=1

n∑

s=1

Drs = 2n tr(B).

Let,

Dr+ =

∑n
r=1 Drs

n
,

D+s =

∑n
s=1 Drs

n
,

D++ =

∑n
r=1

∑n
s=1 Drs

n2
.

Now, we can derive B from D as follows,

brs = −1
2
Drs +

1

2
brr +

1

2
bss

= −1
2
Drs +

1

2

(
Dr+ −

tr(B)

n

)
+
1

2

(
D+s −

tr(B)

n

)

= −1
2

(
Drs −Dr+ −D+s +D++

)
. (5)

To simplify calculation, we define an n × n matrix C = (crs), where crs =

−1
2
Drs. Now we have,

brs = crs − cr+ − c+s + c++ (6)

Therefore, B can be derived from C by double centring as

B = (I − n−111T)C(I − n−111T), (7)

where 1 is an n× 1 matrix all of whose elements are 1.

Since drs is the Euclidean distance between object r and s, B can be shown

to be a positive semi-definite matrix [1, Theorem 5.7], it is possible to obtain

the coordinate matrix X from B by applying an eigenvector analysis. If the

rank of B is p, then B has p positive eigenvalues, which are λ1 ≥ λ2 ≥ · · · ≥
λp > 0. Let ei be the corresponding eigenvector of λi, a possible coordinate

matrix X is: X = (
√
λ1e1,

√
λ2e2, · · · ,

√
λpep).

8

The dimension of the resulting coordinate matrix X could be further reduced

to k (k < p) by selecting the first k biggest eigenvalues to form X. The

accuracy of such reduction can be measured by an agreement measure T,

where T =
∑k

i=1
λi∑p

i=1
λi
. Finding a new configuration by principal coordinates

analysis is called classical multidimensional scaling as well.

2.1.2 Least squares scaling

After we derive the new configuration by principal coordinates analysis, the

disparities between the original data’s dissimilarities and the new configura-

tion’s dissimilarities should be minimized. The problem can be described as

follows.

Given the matrix D = (drs), which describes the distances between n points

in p dimensions, we want to approximate D as closely as possible by the

distances between n points in k dimensions, where k ≤ p. Define the ma-

trix D∗ = (d∗rs) to describe the approximated distances between n points in

k dimensions; the problem is to find a matrix D∗ such that the difference

between the approximatad distances d∗rs and the given distances drs is mini-

mized. One possible way to measure such difference is to use a least squares

stress S, which is

S =
n∑

r=1

n∑

s=1

(drs − d∗rs)
2. (8)

To minimize S, the solution can be found by

∂S

∂xrj
= 0 ∀r, j. (9)

Where,

9

(d∗rs)
2 =

∑

j

(xrj − xsj)
2. (10)

By the chain rule,
∂S

∂xrj
=
∑

s

(
∂S

∂d∗rs

∂d∗rs
∂xrj

).

Since,

−1
2

∂S

∂d∗rs
= (drs − d∗rs),

and
∂d∗rs
∂xrj

=
xrj − xsj

d∗rs
,

the solution satisfies the following equation,

∑

s

(drs − d∗rs)(
xrj − xsj

d∗rs
) = 0 ∀r, j. (11)

We can simplify the above equation by defining an n×n matrix F , such that

frs =
drs − d∗rs

d∗rs
(r 6= s),

frr = −
∑

r 6=s

(
drs − d∗rs

d∗rs

)
.

Now, we can rewrite (11) as,

FX = 0. (12)

We now define another n×nmatrix F ∗ = (f ∗
rs), to derive an iterative equation

for finding the solution. Let

f ∗
rs = frs + 1 (r 6= s),

f ∗
rr = frr − (n− 1).

10

The relation between F and F ∗ is,

F = F ∗ + (nI− 11T).

F ∗ is a symmetric matrix whose row and column sums are zero. If X is also

in a centred form such that its column sums are zero, then,

1TX = 0.

Therefore, the (12) can be written in terms of F ∗ as follows,

− 1
n
F ∗X = X. (13)

Which suggests an iterative update equation,

− 1
n
F ∗
i Xi = Xi+1. (14)

Usually, the initial configuration X1 is the column centred form of the coor-

dinate matrix calculated by the classical MDS. It has been shown that the

value of the stress S never increases during the above iterations and that the

sequence will converge to a solution under normal circumstances [2].

2.1.3 Algorithm

Normally, two phases are included in the metric MDS.

Classical scaling phase: As described in the sub section 2.1.1, find the

symmetric matrix B first, then obtain the new configuration X by the

eigenvector analysis of B.

11

Least squares scaling phase: As described in the sub section 2.1.2. After

obtaining the new configuration by the classical scaling phase, we can

employ (14) iteratively to obtain a new configuration which makes the

stress less than a predefined value. The dimension of the resulting

configuration is the same as that of the initial configuration obtained

by the classical scaling phase.

The detailed algorithm is as follows:

1. Form the matrix C from D,

2. Get B by double centering C,

3. Take the eigen-decomposition of B,

4. Choose the first k biggest non-zero eigenvalues of B, use these eigen-

values and the corresponding eigenvectors to form X0,

5. Get F ∗
0 ,

6. Iterate (14) until converge.

2.2 Non-metric Multidimensional Scaling

In metric MDS, the quantity of dissimilarity is derived out of Euclidean

distance directly. It is not suitable when people are concerned more about

preserving the rank order of the dissimilarities than the actual numerical

values of these dissimilarities. In such cases, the restrictions from the metric

inequality may be violated. Non-metric MDS was proposed to solve this

problem.

12

The purpose of non-metric MDS is to obtain new coordinates for a set ef

data objects in the lower dimensional space given the dissimilarities between

these objects, such that the rank order of dissimilarities is preserved.

In non-metric MDS, one common approach is proposed by Shephard (1962)

and Kruskal (1964) [3, 4]. The approach employs both the pooled-adjacent-

violator algorithm (PAV) to achieve the monotonicity and the steepest de-

scent procedure to obtain the new configuration of points.

2.2.1 Ensuring monotonicity

Given a set of two dimensional data {(xi, yi)}ni=1, sort them by the value

of each xi to obtain the ordered data set {(x(i), y(i))}ni=1. The problem is

to find the estimated value ŷ(i) for each y(i) such that
∑n

i=1(y(i) − ŷ(i))
2 is

minimized subject to the monotone requirement that ŷ(1) ≤ ŷ(2) ≤ · · · ≤ ŷ(n).

This is called the monotone regression. The pooled-adjacent-violator (PAV)

algorithm was proposed to solve such problem. The process of PAV is shown

below.

Start from y(1), loop in series from y(1) to y(n). If any pair of adjacent values

(y(i), y(i+1)) violates the monotonicity restriction, do the following 3 steps.

• Pool y(i) and y(i+1) by replacing both of them by their average.

• Go backwards, check if y(i−1) and the pooled y(i) obey the monotone

requirement, if not, pool y(i−1), y(i) and y(i+1) into one average.

• Continue to the left until the monotonicity requirement is satisfied.
Proceed to the right.

The PAV algorithm could be used in the non-metric MDS. Given the dissim-

ilarity of the ith pair of the data objects, which is δi, we obtain the configu-

13

ration of these data objects by the metric MDS, then calculate the distance

between the two objects in the ith pair of the data objects, which is di. Now

we have a set of two dimensional data {(δi, di)}ti=1, where t = n(n − 1)/2,
n is the number of objects in the data set. We sort them by the value of

each δi to obtain the ordered date set {(δ(i), d(i))}ti=1. To preserve the rank

order of the given dissimilarities, we use the above PAV process. Then, we

obtain a new ordered data set {(δ(i), d̂(i))}ti=1, which satisfies the requirement

of monotonicity.

2.2.2 Steepest Descent Procedure

The steepest descent procedure is used to find the nearest local minimum of

a function y = g(x) provided the gradient of this function can be calculated.

This procedure starts with the initial point y0 = g(x0), move downhill grad-

ually along the curve of the function in the direction of −∇g(x0), which is

the local downhill gradient, it is calculated by −g′(x0). Therefore, the new

value can be found by

xi+1 = xi − εg′(xi). (15)

In the non-metric MDS, after obtained the ordered data set {(δ(i), d̂(i))}ti=1

by the PAV process, we want to obtain a new configuration of these data

such that the disparity of distances d∗i from the new configuration and the

estimated values d̂i is minimized. We use the stress S to measure such

disparity. S is computed by S =
∑n

r=1

∑n
s=1 (d̂rs − d∗rs)

2, where r and s are

two objects in the ith pair of objects in the data set. The new coordinates

could be calculated using the steepest descent procedure. In the above stress

function, d̂rs is given and fixed, the value of d
∗
rs will be updated by iterations

to find the local minimum of the stress S. The steepest descent procedure

in the nonmetric MDS is as follows.

14

We have,

S =
n∑

r=1

n∑

s=1

(d̂rs − d∗rs)
2,

where,

d∗rs =

√√√√
p∑

j=1

(xrj − xsj)2,

and p is the dimension of the coordinates. By the chain rule,

∂S

∂xrj
=

n∑

s=1

(
∂S

∂d∗rs

∂d∗rs
∂xrj

) = α
n∑

s=1

(
(1− d̂rs

d∗rs
)(xrj − xsj)

)
,

where α is a constant. Applying the steepest descent procedure, we have the

following step function,

x
(i+1)
rj = x

(i)
rj − ε

n∑

s=1

(
(1− d̂rs

d
∗(i)
rs

)(x
(i)
rj − x

(i)
sj)
)
. (16)

This step function can be used to obtain new coordinates in the non-metric

MDS.

2.2.3 Algorithm

Kruskal and Shephard’s algorithm for the non-metric MDS contains three

phases.

Initial phase: Get the matrix D from the given dissimilarities δi of any

pair of objects in the data set. Use the classical MDS to derive the

15

Figure 1: Dissimilarity Matrix of the NBA team example

start coordinates X0 in the required lower dimensional space, say p

dimensional space.

Non-metric phase: Use the PAV algorithm to derive any estimated dis-

tance d̂i from the current coordinates such that the required mono-

tonicity is satisfied.

Metric phase: Use the step function (16) to obtain the new coordinates

such that the stress S is very small.

The algorithm starts from the initial phase, then, iteratively do the non-

metric phase and the metric phase until the required rank order of dissimi-

larities is satisfied.

16

-1.50 -1.00 -0.50 0.00 0.50 1.00 1.50 2.00

 -2.50

 2.50

Y

X

new coordinates for the NBA team example

Figure 2: New configuration for the NBA team example

The following example is a simple application of non-metric MDS. The left

table in Figure 1 shows the scores of each match among four NBA teams.

The dissimilarities are calculated by the difference in the scores of two teams

in a match. The dissimilarities among these four teams are shown in the

right table in Figure 1. Some of the dissimilarities do not satisfy the triangle

inequality. Now we want the configuration of these four teams in the 2-

dimensional metric space. Non-metric MDS can do the work. Figure 2

shows the result obtained by the codes I wrote to implement the non-metric

MDS. The rank order of these dissimilarities is preserved in the reproduced

distances in the new configuration.

3 Clustering methods

Human beings have a good sense of grouping. We can distinguish blue from

green, circle from triangle, flower from fruit. We group things naturally, by

17

comparing objects on the features which are the most outstanding to us,

such as, colour, size, shape, weight and so on. In a natural grouping, we

are using dissimilarities to recognize one group from the other. Most of the

proposed clustering algorithms, no matter simple or complicated, employ the

similar way to find clusters. In clustering methods, the dissimilarities can be

measured by some metric functions like the Euclidean distance.

The remainder of this section discusses three major categories of clustering

methods: partitioning methods, hierarchical methods, and the density-based

clustering methods.

3.1 Partitioning methods

Partitioning methods appeared early in the history of clustering methods,

long before the emergence of data mining. The idea is as follows: Separate

objects into a fixed number of clusters such that the total deviation of each

object from its cluster centre is minimized, therefore, the objects in the same

cluster are close to each other, whereas, the objects in different clusters are

far away from each other.

3.1.1 Clusters represented by their means

The k-means is a typical partitioning clustering method. In k-means each

cluster is represented by its mean, which is the average of the data vectors

in a cluster [5].

The k-means tries to minimize E, which is the average dissimilarities from

any object in the data set to the centre of its cluster.

The algorithm of K-means:

18

1. The value of k is given by the user.

2. Randomly choose k objects from the data set to be the cluster centres

at the initial state.

3. Assign each of the remaining objects to a cluster where centre is closest.

4. Recalculate the cluster mean to be the centre for each cluster.

5. Repeat steps 3 and 4 until no change happens.

Although k-means often finds the local optimum, it works well when the

objects within each cluster are quite close to each other while the objects

from different clusters are far away. The computational complexity of k-

means is O(nkt), where n is the number of objects in the data set, k is the

number of clusters and t is the number of iterations for the algorithm to

converge. It is efficient if k << n and t << n. Since k-means uses the mean

of all the data vectors in a cluster to represent the cluster, the drawback is

that, the clustering result is easy to be affected by the outliers in the data

set, and it does not work well when the clusters are not sphere-shaped.

3.1.2 Clusters represented by their medoids

Similar with k-means, PAM (Partitioning Around Medoids) constructs clus-

ters by using a single object to be the representative of a cluster [6]. In

PAM, a medoid is used to represent a cluster. Given a cluster C, we define

d(Op, Oc) to be the distance between an object Op in C and the cluster cen-

tre Oc, which is the vector mean of all the objects in C. The object Op is a

medoid of C only if d(Op, Oc) = min∀Oq∈Cd(Oq, Oc).

To find the medoids for k clusters, where k is given by the user, PAM begins

with an arbitrary selection of k objects, these objects are candidate medoids.

19

Then, at each step, PAM swaps a candidate medoid with an unselected object

as long as such a swap would decrease E, which is the average dissimilarities

from any object in the data set to the medoid of its cluster. In PAM, the

difference of E caused by a swap is called the cost of the swap, it is denoted

by Sswap = Ebeforeswap − Eafterswap.

Suppose m is the current medoid to be replaced, p is a possible new medoid

to replace m, r is any other object which is not a medoid, and m′ is a

current medoid which is nearest to r without m and p. The cost Sswap can

be calculated from 4 different cases.

1. Object r currently belongs to the cluster represented by m and is closer

tom′ than p, then, ifm is replaced by p, r will be assigned to the cluster

represented bym′, so the cost of the replacement as far as r is concerned

will be: d(r,m′)− d(r,m), which is positive.

2. Object r currently belongs to the cluster represented by m and is closer

to p than m′, then, if m is replaced by p, r will remain in the same

cluster, now with medoid p rather thanm, and the cost will be: d(r, p)−
d(r,m), which is negative.

3. Object r currently belongs to the cluster represented by m′ and is

closer to m′ than p, then, if m is replaced by p, r will stay in the

cluster represented by m′, so the concerned cost is: 0

4. Object r currently belongs to the cluster represented bym′ and is closer

to p thanm′, then, ifm is replaced by p, r will be assigned to the cluster

represented by p, so the cost is d(r, p)− d(r,m′), which is negative.

To calculate the total cost of a replacement, we sum up the cost from all the

non-medoid objects. The above 4 cases also indicate the way to reconstruct

the clusters when a medoid is replaced.

20

The idea of the PAM algorithm is: Given the number of clusters decided by

the user to be k, and the data matrix or data dissimilarities matrix, PAM

finds k clusters by minimizing E.

The algorithm of PAM:

1. The value of k is given by the user.

2. Randomly choose k objects from the data set to be the cluster medoids

at the initial state.

3. Assign each of the remaining objects to a cluster if the object is closest

to the medoid of the cluster.

4. For any medoid m do the following: For any object p which is not a

medoid, compute the cost Sswap when replacing m by p, if the cost

Sswap is negative, replace m by p and reconstruct the clusters.

5. Repeat steps 3 and 4 until no change happens

K-means and k-medoids are different in the following two points: PAM tries

to use the most centrally located object within a cluster to be the repre-

sentative. Such an object is a medoid, it is an existing object in the data

set. Since a medoid is an existing object in the data set, the second ma-

jor difference comes from the way to recalculate the cluster representatives

and to reconstruct the clusters when the cluster representatives (candidate

medoids) are changed.

PAM is not efficient for a large data set. By reviewing the above algorithm,

there are k × (n − k) pairs of (m, p), and for each pair it needs n − k

calculations to obtain the total cost for a replacement, so the complexity of

only one iteration is O(k(n− k)2). PAM can be too costly for large data set.

How to improve its efficiency has been taken up by many researchers.

21

3.1.3 PAM with sampling

The key point in PAM is to find the k medoids to minimize E. Its way to

search medoids has been carefully analyzed, and a searching graph can be

derived as follows. A node in the graph is denoted by a set of k currently

selected medoids. Two nodes are the neighbours of each other if and only if

their sets differ by only one medoid. To make a neighbour of a node N , we

simply replace only one medoid in the node N . PAM actually starts from an

arbitrarily chosen node in the graph and search all its neighbours to find the

least cost neighbour node and moves to that node until all the neighbours of

the current node N cost more than the node N . PAM has a big chance to

find the global optimum when the number of objects in the data set is much

bigger than the number of clusters. However, the number of nodes in the

searching graph is too huge, it is very inefficient when the data set is large.

To reduce the number of nodes in the graph is a possible way to improve

the efficiency of PAM. At least two methods have been proposed based on

PAM and sampling techniques to simplify the searching graph. One is called

CLARA [6], the other is called CLARANS [7] which is motivated by im-

proving the effectiveness of CLARA.

The algorithm of CLARA:

1. The value of k is input by the user.

2. Preset a large value for the average dissimilarities of the clustering to

be the current minimum.

3. Draw a random sample with a small size, say 40+2k objects, from the

large data set.

4. Use PAM to find the k medoids in the selected sample.

22

5. Assign each non-medoid object in the entire data set to one of the k

clusters if the object is closest to the medoid of that cluster.

6. Calculate the average dissimilarities of the clustering in step 5 and

compare it with the current minimum, if it is less than the current

minimum, set it to be the value of the current minimum, and keep the

k medoids found in step 4 to be the best set of medoids found so far.

7. Repeat step 3 to step 6, 5 times.

CLARA searches in the sub-graphs of the original searching graph described

above. These sub-graphs are formed by the random samples to make the

number of searching nodes much fewer than that in PAM. CLARA therefore

increases the efficiency rapidly.

Because the global optimum node probably may not be contained in any

of the sub-graphs, reducing the entire searching graph by drawing a small

sample several times seems not reasonable to keep the effectiveness of PAM.

CLARANS was proposed to solve the problem.

CLARANS searches in the entire graph without comparing the current node

N with all its neighbours. Instead, in order to find a better node to replace

N , the algorithm compares N with each node in a random sample drawn

from all the neighbours of N , if N is better than all the sample nodes, it is

retained as a local optimum. CLARANS tries to find a relative large number

of such local optima by iteration in the algorithm and obtain the best one

among them as the result.

The algorithm of CLARANS:

1. The value of k is given by the user.

2. Two other parameters numlocal and maxneighbour are chosen by

the user as well, where numlocal is the maximum number of restarts

23

that the algorithm could have, maxneighbour is the maximum size of

the sample which is used for comparing the current node with a random

sample of its neighbours.

3. Set the current node to be an arbitrary node in the entire searching

graph. This is done by arbitrarily selecting k medoids from the whole

data set as the candidate medoids.

4. Initialize i to be 1 and mincost to be a large value that would be

bigger than the cost Sswap when the current node is replaced by any of

its neighbours.

5. Set j to be 1.

6. Randomly choose a neighbour node R of the current node and compute

the cost Sswap if the current node is replaced by R. The randomly cho-

sen neighbour node is obtained by arbitrarily switching one candidate

medoid in the current node with any other node in the data set, which

is not a candidate medoid in the current node.

7. If the cost is negative, set the current node to be R and go to step 5,

otherwise, increase j by 1

8. If j <maxneighbour, go to step 6, otherwise, compare the cost of the

current node with mincost, if the former is less, set the mincost to

be the cost of the current node and set the bestnode to be the current

node

9. Increase i by 1, if i > numlocal, output bestnode, otherwise go to

step 5

By comparing CLARA and CLARANS with PAM, CLARA first draws ran-

dom samples of the data set and then do PAM on these samples. Unlike

CLARA, CLARANS draws a random sample from all the neighbour nodes

of the current node in the searching graph described above.

24

From k-means to PAM, then, from PAM to CLARANS, we can see the ef-

forts made by the researchers to obtain better partioning clustering methods.

However, these partitioning methods are more likely to find sphere-shaped

clusters. There exist common problems in these methods:

• All these methods rely on the user to choose the number of clusters as
a parameter.

• They use a single point as the representative of a cluster. A single
representative could not capture the shape of the cluster easily if the

clusters have arbitrary shapes, for example, cluster shapes are convex.

• Since the purpose of these algorithms is to find clusters to minimize
E, they fail for data in which points in a given cluster are close to the

centre of another cluster than the centre of their own cluster.

3.2 Hierarchical methods

The hierarchical methods construct a hierarchical decomposition of the data

set. Two typical ways are applied in the hierarchical methods. One is called

bottom-up or agglomerative and the other is called top-down or divisive. In

the initial step of bottom-up methods, each object forms a cluster. If the

number of objects in the data set is n, there are n clusters at the initial state

of the algorithm. The algorithm seeks two closest clusters by some metric

measurement and merges these two clusters until only one cluster is left. In

top-down methods, the algorithm goes in the opposite way. It starts with

only one cluster in which all the objects are contained, and keeps splitting

until each distinct object forms its own cluster. For either method, a stop

criterion is often introduced so as to convince at some desirable set of clusters.

A tree structure (or a dendrogram) can be used to record the merging or

splitting of the clusters and indicate the distance between two joined clusters.

25

Figure 3: Example of a dendrogram

The dendrogram thus displays a nested sequence of clusters and can be used

by the users to choose the number of clusters. Figure 3 shows an example

of a dendrogram obtained by hierarchical clustering on the Gauss2 data set

(the data set is available in Stat 441 course web page). In the dendrogram,

points or groups of points were merged first when they are closer to each

other, after two big groups were formed, they merged to be one group, the

distance between these two groups are relatively long. The height in the

dendrogram demonstrates the distance between two groups if there exists a

merge of them.

Early hierarchical methods employ some simple metric functions to measure

the dissimilarities between any two clusters, say Ci and Cj. Three common

measurements are:

• Single linkage:

dmin(Ci, Cj) = min∀p∈Ci,∀q∈Cj
‖p− q‖

26

• Complete linkage:

dmax(Ci, Cj) = max∀p∈Ci,∀q∈Cj
‖p− q‖

• Average linkage:

davg(Ci, Cj) =
1

|ci||cj|
∑

p∈Ci,q∈Cj

‖p− q‖

To obtain better hierarchical methods, two approaches are proposed recently

and are necessary to be mentioned here. The first approach, represented by

BIRCH [8], creates a hierarchical structure that can be used to refine the

clustering result and save the computation resource requirement. The second

approach, represented by CURE [9] and CHAMELEON [10], adopts more

complicated but reasonable measurements to determine the dissimilarities

between clusters.

3.2.1 Clustering using the Clustering Feature

A Clustering Feature (CF) is used to represent a sub-cluster by the general

statistical information of it. The structure of a CF is a triple storing the

number of data objects, the linear and the square sum of the data vectors in

the represented sub-cluster. The definition is: CF = {N,LS, SS}.

We can observe a very useful property of additivity from CF . Suppose that

CF1 = {N1, LS1, SS1} and CF2 = {N2, LS2, SS2} are the CF s of two disjoint
clusters C1 and C2. Then, the CF of the cluster obtained by merging C1 and

C2 is exactly equal to CF1 + CF2 = {N1 +N2, LS1 + LS2, SS1 + SS2}.

Other necessary statistical information used for typical hierarchical or par-

titioning clustering methods can be calculated easily by using the CF s. For

example, by giving the related CF s of two clusters C1 and C2, it is not diffi-

cult to calculate their centroids X01 and X02 , the radius R of a single cluster,

27

and the centroid Euclidean distance D between two clusters. Suppose the

two CF s are {N1, LS1, SS1} and {N2, LS2, SS2}, the calculation is as follows:

X01 =

∑
∀Xi∈C1

Xi

N1

=
LS1

N1

X02 =

∑
Xi∈C2

Xi

N2

=
LS2

N2

RC1 =
(∑

∀Xi∈C1
‖Xi −X01‖2

N1

) 1
2

=
1

N1

sumelement{(SS1 −
LS2

1

N1

)
1
2}

D = ‖X01 −X02‖ = ‖
LS1

N1

− LS2

N2

‖

Where, sumelement{V } is the summation of all the elements in the vector V .

In BIRCH, CF s are stored in a Clustering Feature tree (CF tree), which

is used for hierarchical clustering. To build the CF tree, two parameters

are given by the users: the branching factor B and the threshold T . These

two parameters constrain the growing of the tree. The branching factor B

specifies the maximum number of children per non-leaf node. Therefore, a

non-leaf node in the tree can have at most B children. Every non-leaf node

stores the sum of CF s from all its children. For a leaf node, it stores the

CF calculated from all the objects in the sub-cluster which is represented by

the leaf node. The threshold T is used to limit the size of the sub-clusters,

which are represented by leaf nodes. To be more precise, the radius of all the

sub-clusters should be less than T .

The algorithm for inserting an entry ent into the CF tree has three main

steps. Here, an entry can be a single data object or a group of data objects.

The algorithm goes as follows:

28

1. Identify the appropriate leaf to insert: Find the leaf node, which rep-

resents a sub-cluster that is closest to the inserted entry. The closeness

can be measured by the Euclidean distance between the centroids of

the sub-cluster and ent. This operation starts from the root and re-

cursively descends the CF tree by always choosing the closest child

node.

2. Modify the leaf node: Suppose the sub-cluster in the leaf node LNi

is closest to ent. Check if LNi can absorb ent without violating the

threshold constraint T . If so, simply modify the CF in LNi. If not,

add a new leaf node, say LNj to be a new child of the parent node of

LNi. Then, form a group of objects by all the objects in the sub-group

represented by LNi and all the objects in ent. Divide this group to be

two sub-groups by the methods: First, find two objects that are the

most far away from each other in the group; Suppose these two objects

are obj1 and obj2, assign all the objects in the group to sub-group 1

if the objects are closer to obj1 than obj2, the other objects form the

sub-group 2. Now, assign sub-group 1 and 2 to be the sub-clusters

represented by LNi and LNj respectively.

3. Modify the path to the root node: The CF in each node on the path

from the affected leaf nodes to the root must be modified after ent has

been inserted. If a split did not happen in step 2, only the affected

CF s are necessary to be modified. If a split happened, then check if

the constraint of the branching factor B is violated. If so, the parent

node has to be split, and this split may affect the nodes in high levels

the same way as well. If the root node is split, the height of the tree

increases by 1. The way to split a non-leaf node is similar as the way

to split a leaf node in step 2, the only difference is that, when split a

non-leaf node, use all its children to form a group to be divided.

Figure 4 shows an example of building a CF tree from a simple data set

29

Figure 4: The example of building a CF tree

30

including five objects. The coordinates of these five objects are: (2,2) (6,3)

(3,3) (7,4) (14,2). We use B = 2 and T = 1.5 as the threshold. The CF s

are displayed for each nodes in the plot. When point 2 is added after point

1 (part (b) of the plot), the radius of the leaf node, which contains point 1

and 2, violates the threshold T , it has to be split (part (c)). When point 5

is added at last (part (g)), the root node has three children, this violates the

threshold B, it has to be split and the height of the tree is increased by 1

(part (h)). Each time when a point is added, the CF s in the affected nodes

have to be updated.

BIRCH builds the CF tree by scanning the total data set once, then obtains

the clustering result based on the CF tree, which could be done in the main

memory of the computer. This algorithm is significantly appropriate for

finding clusters in a very large data set. Since the CF tree can be constructed

incrementally, any data objects given later can be added into the tree without

rebuilding it. So this incremental clustering is another notable advantage of

BIRCH.

We can see from the BIRCH algorithm how these two parameters B and T

control the building of the CF tree. In BIRCH, the choice of them is mainly

determined by memory constraint from the computers. Since the cluster size

is limited by these parameters, a cluster found from the CF tree does not

always correspond to a nature cluster. This is a problem of BIRCH.

3.2.2 Clusters represented by multiple representatives

When assigning objects to clusters, merging two clusters into one or splitting

a cluster, some clustering methods use a single object to represent the whole

cluster, such as the cluster mean or a representative point in that cluster.

Other methods use all the objects in the cluster to represent their cluster,

such as the single linkage, complete linkage and the average linkage clustering.

31

Even BIRCH can be classified into such a one or all category. None of these

methods work well for finding non-sphere or arbitrary shaped clusters.

CURE was proposed to deal with the above problem by using a constant

number of well scattered points in a cluster as the representatives. The

algorithm of CURE is based on the following idea: The scattered points

could capture the shape and extend of the cluster. During the clustering

process, the chosen points are made to be the representatives by being shrunk

towards the centroid of the cluster by a fraction α. CURE is a hierarchical

clustering method, the merging policy is similar with the typical hierarchical

methods. At each step of the algorithm, two clusters with the closest pair of

representative points are merged.

Four key points are necessary to be mentioned to make the algorithm clear.

• How to deal with the effect from outliers

• How to choose the scattered points

• How to shrink these chosen points to make them the representatives of
the cluster

• How to calculate the distance between a pair of representative points

The solutions from CURE are straightforward. The reason why CURE

shrinks the selected points is to get rid of the surface abnormalities and mit-

igate the effects from the outliers. If an outlier, which is far away from the

centroid of the cluster, has been selected, it can be moved a relatively large

distance towards the centroid during the shrinking, and this could degrade

the effect due to the outlier. The scattered points are chosen by selecting the

point farthest from the centroid first, then recursively picking up the point

farthest from the scattered point, which has been chosen the last, until the

number of selected points reaches the preset constant. After selecting these

32

scattered points, CURE shrinks them by the following method: Suppose the

data vector of a scattered point and the centroid of the cluster are P and C

respectively, the shrinking fraction is α, then replace P by P+α(C−P). The
shrinking fraction is a number between 0 and 1. At each step of the clustering

process, CURE selects two clusters to merge if the smallest distance between

two representative points coming from these two clusters respectively is the

shortest. After the merging, the representative points are recalculated for the

new cluster. The computational complexity of CURE is shown in [9] to be

O(N 2). To improve the efficiency, the randomly sampling and partitioning

techniques are considered in CURE.

3.2.3 Clustering by a dynamical model

CHAMELEON is a hierarchical clustering method that uses a dynamical

and flexible merging policy to discover nature and homogeneous clusters.

Unlike some other clustering methods, in CHAMELEON, two clusters are

merged only if the inter-connectivity and closeness between two clusters are

high relative to the internal inter-connectivity of the clusters and closeness of

items within the clusters. Such a complicated policy is proposed to overcome

the drawbacks from many existing clustering methods.

Quite a few hierarchical and partitioning clustering methods measure the

similarity between two clusters using the absolute closeness between two

clusters. For example, PAM uses the distance between medoids from two

clusters, CURE uses the closest pair of the representatives belonging to dif-

ferent clusters, and single linkage clustering uses the closest pair of objects

belonging to different clusters.

Different from the above methods, CHAMELEON finds clusters by a two

phase algorithm: First, the whole data set is grouped into a large number

of relatively small sub-clusters by some graph partitioning technique, these

33

small sub-clusters are regarded to be atoms in the algorithm, then, during

the second phase, it employs a hierarchical clustering algorithm to obtain the

clusters by recursively merging the sub-clusters until the user-specified stop

criterion is satisfied.

In order to measure the similarity between two clusters and perform the graph

partitioning in phase one, CHAMELEON uses the k-nearest neighbour graph

approach. In the k-nearest neighbour graph, each vertex represents a data

object and if two objects are the k-most similar neighbours of each other,

there exists an edge to connect these two vertices. The weight of an edge is

determined by measuring its length in the way that longer edge weights less.

Such an approach has the following advantages:

• Data objects that are far apart are completely disconnected in the
graph

• The graph captures the concept of neighbourhood dynamically in the
way that the neighbourhood radius of an object is determined by the

density of the region in which this object resides.

• The graph can be partitioned into a large number of small initial sub-
clusters efficiently by current graph partitioning techniques, such as

min-cut. A min-cut refers to partitioning the graph into roughly two

parts of equal size such that the total weight of the edges being cut is

minimized.

CHAMELEON determines the similarity between each pair of clusters Ci

and Cj according to both their relative inter-connectivity RI(Ci, Cj, G) and

their relative closeness RC(Ci, Cj, G), where G is the current clustering graph

initially derived from the k-nearest neighbour graph with all the edges, which

will be cut by min-cut recursively, removed to obtain the initial sub-clusters.

The graph G is changed each time after a merging of two clusters. To explain

the above concepts well, some definitions are necessary.

34

A clustering graph is defined to be G = {V,E}, where each vertex v ∈ V ,

represents a data object, and in the initial state, a weighted edge (vi, vj) ∈ E

exists between two vertexes vi and vj, if and only if vi is one of the k-nearest

neighbours of vj, and this edge has not been cut by min-cut during the

process to obtain the initial sub-clusters. The weight of an edge denotes the

closeness between the two objects it connects. An edge weighs more if its

two connected objects are closer to each other. After each merging of two

clusters, the edge set E is grown by adding back all the edges that are used to

connect the two clusters in the original k-nearest neighbour graph but have

been cut in the initial state of G.

Definition 3.1 (split of a cluster) A split of a cluster C (or a separated

sub-graph in G) is defined to be split(C) = {C1, C2, G}, where C1 and C2 are

the two sub clusters obtained by applying a min-cut on C.

Definition 3.2 (set of edges connecting two clusters) The set of edges

that connect two clusters Ci and Cj in G is defined to be EC(Ci, Cj, G).

Definition 3.3 (set of edges that will be cut when splitting a cluster)

The set of edges that will be cut in G when splitting a cluster C into C1 and

C2 by applying min-cut on C is defined to be ES(C) = EC(split(C)).

Definition 3.4 (total weight of a set of edges) The total weight of a set

of edges is defined to be weight(Ec) =
∑

e∈Ec
weight(e).

Definition 3.5 (average weight of a set of edges) The average weight

of a set of edges is defined to be avg(Ec) =
weight(Ec)

#Ec
, where #Ec is the

number of edges in the set Ec.

35

Definition 3.6 (relative inter-connectivity between a pair of clusters)

The relative inter-connectivity between a pair of clusters is defined to be

RI(Ci, Cj, G) =
weight(EC(Ci,Cj))

weight(ES(Ci))+weight(ES(Cj))

2

.

The relative inter-connectivity takes into account the differences in both clus-

ter shape and the degree of connectivity of different clusters.

Definition 3.7 (relative closeness between a pair of clusters) The rel-

ative closeness between a pair of clusters is defined to be RC(Ci, Cj, G) =
avg(EC(Ci,Cj))

#V (Ci)

#V (Ci∪Cj)
avg(ES(Ci))+

#V (Cj)

#V (Ci∪Cj)
avg(ES(Cj))

, where #V (C) is defined to be the num-

ber of vertices in the separated sub-graph representing the cluster C in G.

The relative closeness is able to conduct the algorithm to merge clusters

whose resulting cluster exhibits a uniformity in the degree of closeness be-

tween the items in the cluster.

Based on the above method to model the similarity between clusters, CHAMELEON

finds clusters by using a two phase clustering algorithm. In phase one,

it obtains initial sub-clusters by applying an efficient graph partitioning

method called min-cut on the k-nearest neighbour graph to partition the

graph or the data set into a large number of small clusters, which are

treated as the initial sub-clusters. In phase two, it uses a dynamic merg-

ing policy to merge these initial sub-clusters iteratively until the stop cri-

terion is satisfied. The merging policy is: The algorithm compares the

values of a similarity function for any pair of current clusters, and merge

the pair with the largest value. The similarity function f is defined to be:

f(Ci, Cj, G) = RI(Ci, Cj, G)
αRC(Ci, Cj, G), where α is a user specified pa-

rameter, if α > 1, then, CHAMELEON regards the relative inter-connectivity

as more important, while α < 1, the algorithm gives more importance to the

relative closeness.

36

The overall computational complexity of CHAMELEON is O(N 2), similar

with CURE in computing time, but the clustering performance is snown in

[10] to be better than CURE and quite a few other hierarchical clustering

methods due to its dynamical model for the merging policy.

BIRCH, CURE and CHAMELEON are all hierarchical clustering methods.

They differ in the following main points:

• BIRCH builds a CF tree to obtain clusters, the clustering is done when
the tree is built by scanning the data set only once. When an object

or a group of objects is absorbed into a leaf node, it does a merge of

objects; when a node is split, it does a split of a sub-cluster. The tree

is built after such merges and splits. This is not the same as many

hierarchical methods in which only merges or only splits are allowed.

• CURE uses several representatives to capture the shape and extend
of a cluster, then does a single linkage hierarchical clustering on only

these representatives for each clusters.

• CHAMELEON does hierarchical clustering on the partitions of the k-
nearest neighbour graph. It uses a dynamic merging policy, which

consider both the dissimilarity between two clusters and the similarity

within a possible cluster.

3.3 Density based clustering methods

With density-based methods, density can be defined to be the number of

objects in a predefined unit area in the data space. The purpose of this kind

of clustering is to group points from each high-density region into a cluster

respectively and ignore the objects in low-density regions. The density-based

approaches find arbitrarily shaped clusters. Some major differences in such

37

approaches are the way they measure the density and the strategy they use

to achieve clusters from high-density areas.

3.3.1 Finding clusters by a global density level

DBSCAN is a method based on the assumption: The density within each

cluster is higher than outside of the cluster; The density in the area of noises

is lower than the density in any of the clusters [11].

Unlike most of the partitioning and hierarchical clustering methods, DB-

SCAN neither requires the user to know how many clusters there are in ad-

vance, nor depends on some stop policy. In DBSCAN, only a global density

level is required to determine the high-density areas in the data space.

The following definitions are helpful.

Definition 3.8 (ε-neighbourhood of a point) The ε-neighbourhood of a

point p, denoted by Nε(p), is defined by, Nε(p) = {q ∈ D|dist(p, q) ≤ ε},
where D is the given data set, p ∈ D, and dist(p, q) is a distance function

which calculates the dissimilarity between p and q.

Definition 3.9 (core-point) For any point p in D, p is a core-point wrt

ε and Minpts if and only if Nε(p) ≥ Minpts, where Minpts is a given

constant.

Figure 5 shows an example of a core-point, the region of ε-neighbourhood of

the point p is marked by a circle. Suppose we set Minpts to be 4, there are

6 points in that region, so p is a core-point.

Definition 3.10 (directly density-reachable) A point q is directly density-

reachable from a point p wrt ε and Minpts if and only if q ∈ Nε(p) and p is

38

Figure 5: Example of a core-point

a core-point wrt ε and Minpts

In figure 6, q sites inside the region of ε-neighbourhood of p, and p is a core-

point, so q is directly density-reachable from p. Because q is not a core-point,

p is not directly density-reachable from q.

Definition 3.11 (density-reachable) A point q is density-reachable from

a point p wrt ε and Minpts if and only if there exists a chain of points

p1, p2, ..., pn, where p1 = p, pn = q, such that pi+1 is directly density-reachable

from pi.

Definition 3.12 (density-connected) A point q is density-connected with

a point p wrt ε and Minpts if and only if there exists a point r, such that

both p and q are density-reachable from r wrt ε and Minpts.

In figure 7, since both p and r are core-points, q is density-reachable from r,

q and r are also density-connected.

39

Figure 6: Example of directly density-reachable

Figure 7: Example of density-reachable and density-connected

40

Now we can define the notation of a cluster in the density-based clustering

by the above concepts.

Definition 3.13 (cluster) Let D be a data set of points. A cluster C wrt ε

and Minpts is a non-empty subset of D satisfying both of the following two

conditions.

• ∀p, q ∈ D, if a core-point p ∈ C and q is density-reachable from p wrt

ε and Minpts, then q ∈ C.

• ∀p, q ∈ C, p is density-connected to q wrt ε and Minpts.

Definition 3.13 implies that each cluster must contain at least one core-point

wrt ε and Minpts.

Definition 3.14 (border point) Any point in a cluster that is not a core-

point is a border point in the cluster.

Definition 3.15 (noise) A point in the data set that does not belong to any

cluster is a noise point.

Since all the core-points in C are density-reachable from each other, each

point in a cluster C is density-reachable from any of the core-points in C,

thus, C contains exactly the points which are density-reachable from an

arbitrary core-point in C. This property gives us a feasible way to obtain a

cluster.

The algorithm of DBSCAN:

1. ε and Minpts are given by the user.

41

2. Mark all the points in the data set to be unclassified.

3. Find an unclassified core-point p wrt ε and Minpts. Mark p to be

classified. Start a new cluster to be the current cluster and assign p to

the current cluster.

4. Find all the unclassified points in the ε-neighbour of p. Create a set of

seeds and put all these points into the set.

5. Get a point q in the seeds, mark q to be classified, assign q to the

current cluster, and remove q from the seeds.

6. Check if q is a core-point wrt ε and Minpts, if it is, add all the unclas-

sified points in the ε-neighbour of q to the set of seeds.

7. Repeat step 5 to step 6 until the set of seeds is empty.

8. Start a new cluster and repeat step 3 to step 7 until no more core-points

can be found.

9. Output all the clusters found so far, and mark all the points, which do

not belong to any cluster, to be noise.

The algorithm starts with an arbitrary core-point p wrt ε and Minpts, and

retrieves all points, which are density-reachable from p to be a cluster. When

no more points can be added into the current cluster, DBSCAN begins to

grow the other clusters by the same method until no more clusters can be

found.

In the DBSCAN algorithm, a core-point acts exactly as a high-density at-

tractor by whom the points site in its ε-neighbourhood are absorbed. The

average run time complexity of this algorithm is O(NlogN).

Although DBSCAN can find arbitrary shaped clusters, it only takes into

account the global density level. In many data sets, to discover clusters in

different regions of the data space, different local density levels are required.

42

-4 11

 -3

 9

Y

X

mixtured multivariate data

Figure 8: Example of a date set from a mixture of three distributions

Figure 8 shows a data set derived from a mixture of three 2-d multivariate

normal distributions. The points at the right part of the plot are simulated

from a multivariate normal with relatively large variances and covariances,

the points at the left top part and the left bottom part of the plot are

simulated from two multivariate normal distributions with relatively small

variances and covariances. DBSCAN is hard to find all these three groups

using only a global density level. Although, it can eventually find all the

interesting patterns in the data set by running several times with different

global density levels, the cost of computing is expensive.

Figure 9 shows the clustering on the mixture of three multivariate normal

data set. The result is obtained by running the codes I wrote for implement-

ing the DBSCAN algorithm. I set Minpts to be 4 and ε to be 2. DBSCAN

finds three groups. I marked the points in different groups by different shapes,

and marked the noise by cross .The clustering is reasonable by just looking

at the data at a glance, but it does not reveal the true pattern of the data.

43

-4 11

 -3

 9

Y

X

DBSCAN clustering

Figure 9: Example of DBSCAN clustering (Minpts = 4, ε = 2)

3.3.2 Finding clusters from an ordered density-based clustering

structure

Many clustering methods suffer from the similar problems:

• They require input parameters, which are hard to determine exactly.
(e.g. k-means, PAM, and CLARANS require the number of result-

ing clusters as the input parameter; DBSCAN needs Minpts and ε to

determine the density level).

• Such clustering methods are very sensible to their parameter values.
Slightly changing the value of the parameter can yield significantly

different clustering.

• The data objects in many high-dimensional real data sets often have a
very skewed distribution that cannot be revealed by a clustering algo-

rithm using the global parameter setting.

DBSCAN’s global density parameter setting cannot reveal clusters in data

sets where different local densities are necessary to find clusters in different

44

regions of the data space.

A possible solution may be applying the DBSCAN multiple times with dif-

ferent parameter settings. However, there is infinite number of possible pa-

rameter settings, the run time cost would be much expensive.

OPTICS is then proposed to solve the above problems by constructing an

augmented ordering of the data set to represent its density based clustering

structure [12]. With this structure, any DBSCAN results can be obtained

efficiently with a fixed value of Minpts and any ε values that are less than a

generating distance ε0.

The idea of OPTICS comes from the following observation: WhenMinpts is

fixed, the clusters found by DBSCAN with a smaller ε value are completely

included by the clusters obtained by DBSCAN with a bigger value of ε. This

property makes it possible to find density based clusters with any density

levels based on an ordered clustering structure constructed by using a rel-

atively large value of ε. To decribe such a structure, additional notation is

introduced.

Definition 3.16 (core distance) Let distMinpts(p) be the distance from a

point p to its (Minpts−1)′s neighbour. If p is a core point wrt ε andMinpts,

distMinpts(p) will be called the core distance of p wrt ε and Minpts.

The core-distance of a point p is used to provide the information about the

minimum value of ε to make the point p to be a core-point.

Definition 3.17 (reachability-distance) The reachability-distance of a point

p to another point q wrt ε andMinpts, is denoted as reachability-distanceε,Minpts(p, q).

It is defined by reachability-distanceε,Minpts(p, q) = max(distMinpts(q), distance(p, q)),

if q is a core-point and distance(p,q) ≤ ε.

45

Figure 10: Example of core-distance and reachability-distance

The reachability-distance of a point p to q determines the minimum value of

ε to make the point p directly density-reachable from q, if q is a core-point.

In figure 10, because a is the third nearest neighbor of s, if we set Minpts

to be 4, the core distance of s is the distance from s to a. The reachability-

distance of b to s is the core-distance of s, the reachability-distance of c to s

is the distance from c to s.

The algorithm of OPTICS includes two parts. The first part deals with

generating the ordered clustering structure. The second part deals with

deriving density-based clusters given any ε as long as ε ≤ ε0, with Minpts

fixed.

46

Part one: construct the ordered clustering structure

1. The generating distance ε0 and Minpts are given by the user.

2. Build a vector with length to be the number of points in the data set,

such that each point in the data set will have a corresponding element

in the vector. Each element is a triple storing the point ID, say p1,

core-diatance of p1 and the reachability-distance from p1 to the closest

core-point which sites before p1 in the vector. The vector will be an

ordered clustering structure. At the beginning, it is empty.

3. Arbitrarily select a point, whose information has not been stored in the

ordered structure, and check if it is a core-point wrt ε0 and Minpts. If

it is not a core-point, set both its core-diatance and the reachability-

distance to be UNDEFINED. If it is a core point, calculate its core-

distance, and assign its reachability-distance to be UNDEFINED since

the current selected point is not directly density-reachable from any

point that has been stored in the ordered structure before it. Now store

the information of the current selected point in the ordered structure.

4. Repeat step 3 until a core-point, say p, is found.

5. Find all the points in the ε-neighbours of p wrt ε0 and Minpts, create an

ordered set of seeds and put all the points in that ε-neighbours into the

set. All the points in the set are ranked by their reachability-distances

to p, the shortest the first.

6. Get the first seed in the set, say point q, add the information of q,

including the core-distance of q and the reachability-distance to p, to

the ordered structure. Then, remove q from the set of seeds. If q is

a core-point, adds all the ε-neighbours of q, which have not appeared

in the ordered structure, to the set of seeds. If any point, say r is

already in the set, compare the reachability-distance from r to p with

47

that distance from r to q, and keep the smaller value. Reorder the set

of seeds by the current reachability-distances.

7. Repeat step 6 until the set of seeds is empty.

8. Repeat step 3 to step 7 until the information of all the points in the

data set has been stored in the ordered structure.

OPTICS constructs the ordered clustering structure during completing a

DBSCAN clustering with density level Minpts and ε0. Each point in the

structure holds the reachability-distance to its closest core-point appearing

before it in the ordered structure, if that distance exists.

This particular order described above can be used to find DBSCAN clustering

with Minpts fixed and ε less than the generating distance ε0.

Part two: extract clusters from the ordered clustering structure

1. ε is given by the user.

2. Set clusterID to be 1.

3. Get the first core-point wrt ε and Minpts in the ordered structure, say

point p, assign p to the current cluster identified by clusterID.

4. Assign all the successive points, which follow p in the structure, to

the current cluster if their reachability-distances are not larger than

ε. This step stops when the first point, say q is found such that its

reachability-distance in the structure is larger than ε.

5. Increase clusterID by 1.

6. Continue to scan the structure from point q, do step 3 to 5 to form the

second cluster.

48

-4 11

 -3

 9

Y

X

OPTICS Clustering

Figure 11: Example of OPTICS clustering (ε = 1.5)

7. The algorithm keeps finding new clusters until all the points in the

structure have been processed.

8. Output all the clusters. If a point is not in any clrster, it is a noise.

OPTICS is augmented DBSCAN. By using the ordered structure, the com-

putational complexity has been reduced rapidly from O(NlogN) to O(N).

Since the clusters found by DBSCAN using a small value of ε are contained

in the clusters found by using a relative larger ε, if we start from a large ε

and reduce its value gradually, a hierarchical clustering structure could be

generated based on the ordered clustering structure. However, in OPTICS,

this has not been mentioned.

To discover more interesting patterns in the mixture of three multivariate nor-

mal data set (shown in figure 8), I implemented the OPTICS algorithm, and

use different density levels to extract clusters based on the ordered clustering

structure. I constructed the ordered clustering structure using Mints = 4

and ε0 = 6. Then I fixed Minpts to be 4 and tried three different values of

ε: 1.5, 2, 2.5. When ε = 2, the result is the same as I obtained in figure 9.

49

-4 11

 -3

 9

Y

X

OPTICS clustering

Figure 12: Example of OPTICS clustering (ε = 2.5)

Figure 11 shows the result using ε = 1.5, Figure 12 shows the result using

ε = 2.5. These results give us more ideas about the true patterns in the data

set. If we use these three clustering results to form a hierarchical clustering

tree, it will help us analyze the data more easily.

3.3.3 Runt pruning density based clustering

Some earlier proposed density-based clustering methods apply only the global

density level to estimate clusters, such as DBSCAN. As described in the

subsection 3.3.1, this approach cannot reveal natural clusters in many real

data sets in which multiple modes exist with different density levels.

To solve the above problem, runt pruning density based clustering (runt

pruning clustering for short) generates a clustering tree by employing the

nearest neighbour density estimate on the minimal spanning tree (MST) of

the data set [13]. The MST of a data set is a graph used to connect all the

vertexes (objects in the data set) with minimal sum of edge length. Besides

this, a runt pruning is applied on the clustering tree in order to find the

50

significant real clusters.

Runt pruning clustering is based on the following ideas or assumptions:

• Regard the data as an iid sample from some unknown probability den-
sity p(x)

• Regard the groups or clusters corresponding to modes of the density
p(x)

• The clustering is to find the modes and assign each objects to the
domain of attraction of a mode

To make the above ideas more precise, the notion of high density clusters is

helpful [15, Section 11].

Definition 3.18 (level set and high density clusters) Define the level

set L(λ; p) of a density p at level λ to be the subset of the feature space as long

as the density for each object in this subset exceeds λ. L(λ; p) = {x|p(x) > λ}.
Then, the high density clusters at level λ are defined to be the maximally

connected subsets of L(λ; p).

Since there are only three possibilities for any two high density clusters A

and B found by the same or different density levels: A ⊃ B, or B ⊃ A, or

A ∩ B = φ, it is easy to derive a hierarchical structure when collecting the

high density clusters. A clustering tree can be constructed by the following

method:

• The root node represents L(0; p), which includes every objects in the
data set

51

• Each node N in the tree represents a maximally connected set D(N),

which is a subset of the level set L(λ; p), where λ is the density level

corresponding to the node N .

• Each node has either two children or no children, if a node does not
have any children, it is a leaf node.

• The two children of a node N can be generated by finding the lowest

level λd such that L(λd; p) ∩ D(N) has at least two connected com-

ponents (modes). If more than two components have been found, we

assign the first one to the first child, and assign the others to the second

child.

• If no such λd could be found, this implies that D(N) has only one

mode, therefore N is a leaf node.

To implement the above clustering tree, two problems must be solved.

• How to estimate the density p for the level set L(λ; p)

• How to derive the maximally connected subsets of L(λ; p)

Runt pruning clustering has found the connection between the nearest neigh-

bour density estimate and the minimal spanning tree of the data set. This

connection suggests a solution to the above problems and has been employed

in the runt pruning clustering algorithm to derive the clustering tree.

Definition 3.19 (nearest neighbour density estimate) The nearest neigh-

bour density estimate of an object y denoted as p̂(y), is defined to be p̂(y) =
1

nV d(y,X)m , where, n is the total number of objects in the data set, m is the

dimension of each object in the data set, V is the volume of the unit sphere

in Rm, d(y,X) is the distance from y to its nearest neighbour. V d(y,X)m is

52

the volume of the sphere centered at y with radius d(y, xj), where xj is the

nearest neighbour of y.

The clustering tree can be built by the connection of the nearest neighbour

estimate and MST:

• First, we use the nearest neighbour estimate on each object to deter-
mine the estimated level set L(λ; p̂). Therefore, given a density level

λ, we obtain the estimated level set by L(λ; p̂) = ∩i
o

S (xi, r(λ)). So,

L(λ; p̂) is the union of open spheres centered at each objects, with ra-

dius r(λ), where r(λ) =
(

1
nV λ

) 1
m

. By definition 3.19, p̂(y) > λ, if and

only if d(y,X) < r(λ). Then, the modes or the maximally connected

components can be found from such unions.

• Define T to be the MST of the given data set X. A partition of T
is obtained by breaking all the edges with length greater than 2r(λ).

Suppose T has been separated into k sub trees, which are T1, T2, ..., Tk,

and the corresponding partition of the data set also separates X into

k sub sets, which are X1, X2, ..., Xk. Based on the above partition,

we can derive all the connected subsets of L(λ; p̂) by getting the sets

Lj = ∩xi∈Xj

o

S (xi, r(λ)), where j = 1, 2, ..., k. Moreover, Li and Lj are

disconnected if i 6= j.

A way to construct the clustering tree is breaking the longest edge of the

MST recursively. This approach has been shown to be isomorphic to the

single linkage dendrogram [14].

However, as mentioned in [13], the single linkage approach suffers from the

following problems:

• The clustering tree tends to generate many small clusters because the
longest edges of the MST are always located in lower density regions.

53

• The tree will have as many leaf nodes as the objects in the data set,
therefore this is not a good estimate for the clustering tree of the un-

derlying density.

To solve the above problems , a runt pruning method is then employed on

the clustering tree. By the method, some nodes in the clustering tree is cut

off to make each remaining node satisfy the minimal runt size.

Definition 3.20 (runt size of a node in a clustering tree) The runt size

of a node N in a clustering tree is the number of objects in the cluster corre-

sponding to the smaller child node of N .

Since each node of the single linkage dendrogram corresponds to an edge of

the MST, we can also define the runt size for an MST edge e.

Definition 3.21 (runt size of an edge e of the MST) Breaking all the

MST edges that are as long or longer than e, we can find the two sub-trees

of the MST rooted at the two MST nodes originally joined by e. The runt

size of the edge e is defined to be the smaller number of nodes of these two

sub-trees.

The runt size for an MST edge has a useful property: An MST edge with a

large runt size implies the presence of multiple modes. It can be verified by

the following observation: When constructing an MST, we can initialize each

object to be a group, then merge the most two closest groups recursively until

only one group is left. During the merging, an edge is added in the MST to

connect the two closest objects that are from these two groups respectively.

The number of objects in the smaller group is the runt size of this edge. If

the underlying density has multiple modes, the initial merges in the above

process tend to happen in high-density areas in which the distances between

54

objects are relatively small. So the MST tree fragments grow first in these

regions respectively. When those fragments that probably are representing

multiple modes have to be joined by edges, these edges will have relatively

large runt sizes.

The algorithm of runt pruning clustering:

1. Choose a threshold for the minimal runt size, which is r0.

2. Compute the MST graph T for the given data set.

3. Construct the clustering tree by the following process:

• Let the root node corresponding to the whole MST. This is the same
as use L(0; p) to represent the root node.

• Let T (N) be the sub-tree, which corresponds to the node N , in T .

Obtain the lowest density level λd for each node N in the tree by finding

the longest edge e in T (N) with runt size no less than the threshold

r0, if it could be found, the two sub trees rooted at the node N are

obtained by breaking the edge e of T (N).

• Repeat the above process until no children can be found for all the leaf
nodes in the clustering tree.

Before doing the runt pruning clustering, we should figure out how to choose

the threshold of minimum runt size. Since the runt size for each edge in the

MST graph can be calculated beforehand, we rank these runt sizes in the

descending order and then find the first big gap. It gives us the suggestion

about the minimum runt size.

The runt pruning clustering is effective for the data sets with multiple den-

sity modes. However, this approach relies on the nearest neighbour density

55

-4 11

 -3

 9

Y

X

Runt Pruning Clustering

Figure 13: Example of the runt pruning clustering

estimate. Some better density estimates, such as kth neatest neighbour es-

timate, could not be used in this algorithm directly. Besides, the computa-

tional complexity of funding the MST dominants the total cost of the runt

pruning clustering. Although some efficient algorithms could be employed to

reduce the computing cost of MST to be O(NlogN), it is still not practical

for very large high dimensional data sets.

I implemented the runt pruning clustering algorithm and applied this method

on the mixture data set (see figure 8). First, I built the MST of the data.

Then, I ranked the runt size of edges in the MST. The first 6 runt sizes are: 21

13 10 5 4 4. Since there is a big gap from 10 to 5, I used 5 to be the minimum

runt size to build the clustering tree (Although the first big gap is from 21

to 13, since I want see more patterns and compare the result with OPTICS,

I chose 10). Figure 13 shows all the four groups found by the clustering tree.

The clustering tree is shown in figure 14. Runt pruning clustering found the

same result as OPTICS did, and the clustering tree gives us more clear ideas

of the patterns in the data.

There is some connection in the density estimation between runt pruning

56

Figure 14: The clustering tree built by the runt pruning clustering

57

clustering and DBSCAN or OPTICS. In DBSCAN or OPTICS, the density

is estimated by two parameters: ε and Minpts. If we set Minpts = 2, and

ε = r(λ) =
(

1
nV λ

) 1
m

, DBSCAN or OPTICS will also find all the maximally

connected sub-sets of L(λ; p). So, if we combine OPTICS with runt pruning

and construct a hierarchical clustering tree, we will have the same result as

the runt pruning clustering algorithm will do.

4 Conclusion

Among different ways to measure dissimilarities, the paper focuses on using

metric functions. Getting the data sets from the metric spaces or reducing

the dimensions of data sets in the metric spaces are necessary for many

clustering methods. Multidimensional scaling (MDS) is a possible solution.

In this paper, three major categories of clustering methods are discussed.

They are partitioning, hierarchical and density-based clustering methods.

Four typical partitioning methods are discussed: k-means, PAM, CLARA

and CLARANS. All these methods use a centroid to represent a cluster. K-

means uses the cluster mean and the others use the medoid. CLARA is PAM

on samples of the dataset, and CLARANS reduces the search graph of PAM

by sampling on the search graph.

BIRCH, CURE and CHAMELEON are three hierarchical clustering meth-

ods proposed resently. BIRCH builds a CF tree to find clustes. It uses CF s

to represent clusters and support incremental clustering. CURE uses several

representatives to represent a cluster, and does a single linkage clustering

on only these representatives of each cluster. CHAMELEON does hierarchi-

cal clustering on the partitions of the k-nearest neighbour graph. It uses a

dynamic merging policy, which consider both the dissimilarity between two

58

clusters and the similarity within a possible cluster.

The relations among DBSCAN, OPTICS and runt pruning clustering are

high. OPTICS is augmented DBSCAN. It builds an ordered clustering struc-

ture for running DBSCAN efficiently. It could also build a hierarchical clus-

tering structure like runt pruning clustering does. If we set Minpts = 2 and

ε = r(λ) =
(

1
nV λ

) 1
m

, DBSCAN or OPTICS will also find all the maximally

connected sub-sets of L(λ; p). Runt pruning clustering was proposed to find

such sub-sets. The difference is that, runt pruning clustering uses a minimum

runt size to be a threshold on cutting the minimum spanning tree to obtain

more reasonable clusters.

Not only some clustering methods but also the different categories of clus-

tering methods are related. For example, hierarchical methods find a nested

sequence of clustering, each clustering is a partition of the data, and so, in

this sense, a hierarchical clustering is a nested sequence of partitions. The

density based clustering algorithms use density estimation to partition the

data.

I implemented the algorithms for non-metric MDS, DBSCAN, OPTICS and

runt pruning clustering. The purpose of this work is to find out exactly how

they work so as to lay the groundwork for future research.

More research work could be done in the future based on this paper. For

MDS methods, only one stress is considered in the paper. There exist dif-

ferent ways to measure stress, which might also be investigated in the MDS

approach. As mentioned in [13], some better density estimates, such as the

kth nearest neighbour estimate might be used, however Stuetzle [13] did not

find them efficient for direct using in the runt pruning clustering algorithm.

However the relation between DBSCAN, OPTICS and runt pruning cluster-

ing has been found, it might be possible to combine the kth nearest neighbour

estimate with runt pruning by using the DBSCAN/OPTICS approach. Fi-

59

nally, some other density estimates , which are more flexible, could also be

considered to obtain better clustering.

References

[1] Seber, 1984. Multivariate Observations, John Wiley & Sons.

[2] W. Ledermann(ed.), 1984. Handbook of Applicable Mathematics: Vol. 6

Part B Statistics (ed. E Lloyd), Wiley-Interscience, Section 1.7.7, page

747.

[3] R.N. Shephard, 1962. The Analysis of Proximities:Multidimensional

Scaling with an Unknown Distance Function, Psychometrika, 27, 125-

140.

[4] J.B. Kruskal, 1964. Nonmetric multidimensional Scaling: a numerical

method, Psychometrika, 29, 115-129.

[5] J. MacQueen, 1967. Some Methods for Classification and Analysis

of Multivariate Observation. Proc. 5th Berkeley Symp. Math. Statist,

Prob.,1, 281-297.

[6] L. Kaufman and P.J. Rousseeuw, 1990. Finding Groups in Data: an

Introduction to Cluster Analysis, John Wiley & Sons.

[7] R.T. Ng and J. Han, 2002. CLARANS: A Method for Clustering Objects

for Spatial Data Mining, IEEE transactions on knowledge and data en-

gineering, Vol. 14, No. 5.

[8] T. Zhang, R. Ramakrishnan, M. Livny, 1996. BIRCH: An Efficient Data

Clustering Method for Very Large Databases, SIGMOD’96 Montreal,

Canada.

60

[9] S. Guha, R. Rastogi, K. Shim, 1998. CURE: An Efficient Clustering

Algorithm for Large Databases, SIGMOD’98 Seattle, USA.

[10] G. Karypis, E. Han, V. Kumar, 1999. CHAMELEON: A Hierarchical

Clustering Algorithm Using Dynamic Modeling, IEEE Computer, 32(8)

68-75.

[11] M.Ester, H. Kriegel, J. Sander, X. Xu, 1996. A Density-Based Algorithm

for Discovering Clusters in Large Spatial Databases with Noise, Proc. Of

KDD-96.

[12] M. Ankerst, M. Breunig, H. Kriegel, J. Sander, 1999. OPTICS: Ordering

Points To Identify the Clustering Structure, Proc. ACM SIGMOD’99

Int. Conf. On Management of Data, Philadelphia USA.

[13] W. Stuetzle, 2003. Estimating the cluster tree of a density by analyzing

the minimal spanning tree of a sample, Journal of classification, Vol 20,

No. 5, 2003, 25-47..

[14] J.C. Gower and G. Ross, 1969. Minimal Spanning Tree and Single Link-

age Cluster Analysis, Applied Statistics, 18, 54-64.

[15] J. Hartigan, 1975. Clustering Algorithms, Wiley.

61

