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Abstract   
 
Sokal et al. proposed cluster analysis in the late 1950s. It is a method to find the cohesive 

groups based on measured characteristics using numerical measurement. Typical 

clustering methods are: partitioning methods, hierarchical methods, density-based 

methods, grid-based methods and model-based methods. My research is focus on 

model-based clustering. Here, only Multivariate Normal Distribution is considered. 

 

Parameters in Multivariate Normal Distribution are considered by geometrically 

decomposition of the covariance matrix. Two different approaches for the parameters 

estimate are EM (Expectation-Maximization) and Gibbs Sampler. Both are based on 

Bayesian Theorem by introducing class label vector as latent variable.  

 

Two model-selection approaches to solve the posterior integrated likelihood problem for 

Bayesian factor, which determining the best model from a list of candidate models, are 

BIC and Laplace approximation.  
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1. Introduction 
 

Data mining has become very popular for many years. Its goal is to extract information 

from any data source. If the data source is database, then it is traditional database mining, 

which is mostly investigated based on the full and clear data structure. If the data source 

is text file, it is called text mining, which is also studied for years. As an unstructured 

database, both variable and noise need to be furthering handled before any statistical 

algorithm is carried. Lots of methods have been involved in this area.  

 

Before any data mining methods are applied, we need to understand where the data 

comes from. Some are from experiments, which mean we can control the outcome 

variable by changing different input variable group. That is not the area of data mining 

because we already know the data enough. Others are from observation, which means the 

data was collected as it is, and there is not way to make the data. Here, only this kind of 

out of control dataset was considered.  

 

1.1 Supervised vs. Unsupervised learning 

 

From the problem itself, data mining can be classified into two areas: supervised learning 

and unsupervised learning. Supervised learning, which is also called classification 

problem, uses information from training dataset including class labels to find the 

classification rule to classify test data set. In order to avoid the problem of over fitting, a 

small part of data (Say, 10 percent), which is separated from the training data set, is used 

to validate the performance of classification rule. Unsupervised learning, which is also 

called clustering method, uses the whole data set without class labels. Its goal is to find 

the criterion to divide the data into several groups, with the observation within each 

group share some common attributes. Usually, it is hard to evaluate the performance of 
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the clustering result. 

 

Data mining is closely related to two disciplines: exploratory data analysis in statistics 

and knowledge discovery & machine learning in computer science. It is not a simple way 

to apply a statistical model, since the statistical models are usually based on many 

assumptions. 

 

The most popular classification methods are CART (classification and regression tree), 

Neural Network, kNN (k nearest neighborhood), Logistic regression, Naive Bayes, and 

etc. The classification performance can be evaluated using industrial standard, such as 

precision, Recall, and F-measure.  

 

1.2 Clustering analysis  

 

Sokal, Sneath, and others proposed cluster analysis in the late 1950s. It is a method to 

find the cohesive groups based on measured characteristics using numerical 

measurement. 

 

Researches are mainly based on a set of heuristic methods, such as partitioning method 

and hierarchical clustering. Typical partitioning methods are K-means and etc. 

Partitioning method is usually based on dissimilarity measurement between observations, 

which is often used together with hierarchical method. The distance criterion, which is 

used to measure the dissimilarity, includes Manhattan distance and Euclidean distance. 

 

As a very straightforward approach, it is hard to know how many clusters we need, how 

to compare the performance between methods, and there is no way to deal with outliers in 

heuristic methods.  
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In order to better understand clustering performance, we need to use probability model to 

access all these uncertainty. Whether this method is likely to be better than others or can 

suggest better methods.  

 

Model-based clustering method is based on probability model from the data. We assume 

data are come from some distribution functions. So the reason to divide the data into the 

two groups is that the data come from a mixture of two different probability models. 

 

1.3 Model-based Clustering 

 

MLE (maximum likelihood estimation) is used in model-based clustering method to find 

the parameter inside the probability model. Since the probability function is a mixture 

summation of a couple of probability function, it makes the traditional method infeasible 

to find the maximum value. Latent variable technique is used here, relocation algorithm 

such as EM and Gibbs sampling are among the most popular.   

 

The criterion to split one data set into several data sets is to make the variance between 

the clusters maximum and inside the clusters minimum. 

 

The following sections are organized as follows: Section 2 gives a brief introduction of 

the mathematical model, which brought us the corresponding question. Section 3 gave a 

general solution of EM with parameter estimate. Section 4 gave a general solution of 

Gibbs Sampler regarding to parameter estimate. Section 5 gave the detail procedure for 

Model-based clustering involving two approaches for both model selection and clustering 

procedure. And some useful packages were given as model-based clustering tools. 
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2. Mathematical Model  
 
2.1 Finite mixture model 
 

Assume input data 
n
xxx ,...,,

21  is a random sample from an unknown distribution 

function with n observations in p dimensional space. The entire sample X is defined as 

( )TT

n

TT

xxx ,...,,
21 , where the superscript T denotes vector transpose. 

 

In order to model the data, a mixture model is very useful in practice. The observations 

are often heterogeneous, rather than one single homogeneous group, and can often by 

modeled by a mixture distribution. Assume that there is only finite number of clusters in 

the model, that the number of clusters is fixed, and that data are from different clusters. In 

each cluster, data is assumed coming from some probability distributions.  

 

A finite mixture distribution is a weighted linear combination of a finite number of 

simple component distributions: 

 ~ ( ){ }!
=

•
g

k

kikk xf
1

,;"#  

where the vector !  containing all unknown parameters in the mixture model, and can 

be written as { }
gg

!!"" ,...,,,...,
111 # ; g is the number of components. The component 

probability
k

! represents the probability that an observation will come from the kth 

component, and so lies in between 0 and 1, and sums to 1, ( ),; kik xf !  is the kth 

component distribution function and 
k

! is the kth component parameter. 

 

The component distributions may or may not have the same form. Theoretically, it can be 

any form of distribution including Bernoulli, Poisson, Normal, t and etc. The multivariate 
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normal distribution is often used as the common mixture component. 

 

If the component distribution is normal, the finite mixture model becomes the finite 

multivariate normal mixture model. The main difficulty of these models is to determine 

in advance which distributional forms should be used for the particular problem. 

Probabilistic model-based clustering methods assume a probability model for each cluster, 

and so are best way when we have reason to believe that the component distribution 

forms are appropriate.  

 

 
2.2 Finite multivariate normal mixture model 
 

Suppose the component distribution is multivariate normal in p dimensional space with 

mean vector 
k
u  and covariance matrix 

k
! ; that is  

( ) ( )!
=

!="
g

k

kkikiMixture uxxf
1

,|| #$  

where component parameters 
k

!  have become ( )
kk

u !;  and parameter !  is 

( )
ggg

uu !!" ,...,,,...,,,...,
1111

##  

 

In the case of the multivariate normal, the relationship between observations can be 

measured by covariance matrix. The covariance matrix in the kth group can be modeled 

parsimoniously in a geometrically interpretable way using a variant of the standard 

spectral decomposition of a covariance matrix, namely: 

 T

kkkkk
ODO!="  (Covariance Matrix) 

where 
k
!  is a scalar constant, and represents the volume of the kth covariate matrix; 

k
O  is an orthogonal matrix representing the orientation of the kth covariate matrix; 

k
D  
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is a diagonal matrix, represents the shape of the kth covariate matrix, with the form 

{ }pkkkDiag !!! ,..,,
21

, where 0..
321

>=>=>=>=>= pkkkk !!!! . This is the 

covariance matrix representation given in Banfield and Raftery (1993).  

 

This decomposition makes the covariance matrix easy to understand. Banfield and 

Raftery (1993) consider eight possibilities as shown in Table 1. These determine different 

covariance structure, which are easily interpreted geometrically via this decomposition. 

They range for from a simple diagonal in structure 1 with spherical shape and the same 

volume to the absence of any common covariance in structure 8. 

 

Table 1: Covariate matrix decomposition for geometric interpretation 

 

Structure k
!  D (Shape) O (Orientation) ! (Volume) 

1 I!  Spherical N/A Same 

2 I
k
!  Spherical N/A Different 

3 !  Same Same Same 

4 0
!

k
"  Same Same Different 

5 T

kk
DOO!  Same Different Same 

6 T

kkk
DOO!  Same Different Different 

7 T

kk
OOD!  Different Same Different 

8 k
!  Different Different Different 

 

 
2.3 Estimation 
 

In order to estimate the parameters of the mixture distribution, many approaches have 
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been developed, such as graphical methods, method of moments, minimum-distance 

methods, maximum likelihood, and Bayesian approaches. But explicit formulas for the 

parameter estimate are typically not available (McLachlan & Peel).  

 

Maximum likelihood estimation method has been by far the most commonly used 

approach to the fitting of mixture distributions with the likelihood function. 

( ) ( )!
=

"#
n

i

kiMixture xfXL
1

|$! = ( )!"
= =

n

i

g

k

kikk xf
1 1

|#$  

 

It is often more convenient to work with the log of the likelihood which up to an arbitrary 

additive constant is: 

( ) ( )( )!
=

="
n

i

kiMixture xfXl
1

|log; # = ( )! !
= =

""
#

$
%%
&

'n

i

g

k

kikk xf
1 1

|log ()  

 

There is generally no direct closed-form solution to maximize this log likelihood function 

because of the sum of terms inside the logarithm when the underlying model is a mixture 

distribution. Since the log-likelihood function leads to a non-linear optimization problem, 

many methods have been applied to solve this problem.  

 

A popular approach, which we will now develop, is the EM (Expectation – Maximization) 

algorithm, first proposed by Dempster, Laird, and Rubin (1977) to handle missing data 

problem. 

 

 

2.4 Introducing latent variables 

 

While it is difficult to solve the maximization problem for mixture likelihood, it can be 
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made somewhat easier by enlarging the sample with latent (unobserved) data. The latent 

variables are then treated as missing and the EM algorithm is applied. In the context of 

cluster analysis, the latent variable will be the class label of each point. The original data 

is then considered to be incomplete since the class labels are unknown; a complete data 

set would be (X, Z), where every observation has a known class label. 

 

The mixture model is treated as a distribution in which the class labels are missing, but 

the class labels can be treated as random variables. If these labels were known, we could 

get closed-form parameters estimates in each component distribution by partitioning the 

data points into their respective groups.  

 

The EM algorithm is a general iterative optimization algorithm for maximizing a 

likelihood function given a probabilistic model with missing data. For each EM-step the 

likelihood can only increase, thus guaranteeing convergence of the method to at least a 

local maximum of the likelihood as a function on the parameter space. 

 

Let latent indicator vector 
i
Z  be a g-dimensional component indicator label vector 

( )
igi ZZ ,...,

1
 with 

ik
Z  = 1, if and only if ki Groupx ! ; and 0, otherwise. We can easily 

see that 1

1

=!
=

g

i

ikZ  and so 
i
Z  is distributed according to a multinomial distribution 

consisting of one draw on g categories with probabilities 
g

!! ,...,
1

; that is: 

( ) ( )!,1~ MultZfZ ii = = !
!
"

#
$
$
%

&

g
zzz ,..,

1

21

( )
ikzg

k

k!
=1

" = ( )
ikzg

k

k!
=1

"  

where ( )T
g!!! ,...,

1
= . The number of observations within group k can be obtained by 

summing over all the indicator variables 
ik
z  for all observations inside group k; that is 
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!
=

=
n

i

ikk
zn

1

 and nn

n

i

k
=!

=1

. 

 

Similarly, the density ( )Zxf |  is ( )ik xf  when 1=
ik
Z  or simply ( )[ ]

ikzg

k

k xf!
=1

. And 

( )Zf  is 
k

!  when 1=
k
Z  or simply [ ]

ikzg

k

k!
=1

" . The joint density of ( )ZX ,  is 

therefore ( ) ( ) ( )== ZfZxfZxf |, ( )[ ]
ikzg

k

k xf!
=1

[ ]
ikzg

k

k!
=1

" ( )Zf . 

 

An observation 
i
x  can be considered to be drawn from one of a fixed number of 

component distributions according to the probabilities 
g

!! ,...,
1

, and then conditionally 

on being in group k, drawn from the density ( )xf k . That is the 
k

!  is the probability of 

coming from group k and ( )xf k  is the conditional probability of x given it comes from 

group k. 

 

The probability, 
ik
! , of observation i belonging to group k given the values of 

i
x  can 

now be calculated by Bayes’ theorem: 

( )
( )

( )!
=

=
""

="=
g

k

kikk

kikk

i

kikii
ikiik

xf

xf

x

GroupxGroupxx
xGroupx

1

;

;

)Pr(

)Pr()|Pr(
|Pr

#$

#$
%  

For a particular observed 
i
x , we evaluate this membership probability for each group, 

and assign it to the group having the greatest probability. That is, if 

( )igiiik !!!! ,...,,max
21

= , we assign observation i to group k, and so might estimate 
ik
z  to 

be 1 and 0, otherwise.
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3. EM Algorithm 
 

3.1 EM In general 

 

EM algorithm is developed to find maximum likelihood estimators with missing data. 

The log-likelihood function ( )Xl ;!  can be written as the difference between two 

likelihood functions as follows 

( )Xl ;!  = ( )XLik ;log !  

                                 = ( )!;log Xf  

                = ( )
( ) ( )!!

!

;/;,

;,
log

XfZXf

ZXf  

         = ( )
( )!

!

;|

;,
log

XZf

ZXf  

                       = ( )!;,log ZXf  - ( )!;|log XZf  

                  = ( )ZXl ,;
0
!  - ( )XZl |;1 !             

where the first term  is the complete data log-likelihood function. The 

second term ( )XZl |;1 !  is the conditional log-likelihood function based on the latent 

variables Z given X. 

 

Unfortunately, ( )ZXl ,;
0
!  and ( )XZl |;1 !  require the value of Z, which is missing. 

Rather than maximize ( )Xl ;!  directly, we consider maximizing its expectation over Z 

given X, since ( )[ ] ( )XlXlE
XZ

;;; *

| !=!!  for any value of *
! . It turns out that it will 

only be necessary to maximize ( )[ ]*0| ;,; !! ZXlE
XZ

 at any step. 
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Consider ( )Xl ;!  as a function of the dummy parameter ! , maximizing the 

expectation of ( )Xl ;!  over XZ |  based on the current choice *
!  gives  

( )Xl ;! = ( )[ ]*| ;; !! XlE
XZ

 

            ( )[ ] ( )[ ]*1|

*

0| ;|;;,; !!"!!= XZlEZXlE
XZXZ

 

            = ( )*,!!Q  - ( )*,!!R  

where *
!  is the current choice and !  is the true value. Here ( )*,!!Q  is defined as 

( )[ ]*0| ;,; !! ZXlE
XZ

; ( )*,!!R  is defined as ( )[ ]*1| ;|; !! XZlE
XZ

. This unfortunately 

is a function of the true, say but unknown value *
! , which is to be estimated.  

 

However this suggests a possible iterative procedure. Begin with an initial value for )0(
!  

and find the expectation for ( )Xl ;!  over XZ |  as if )0(
!  were the true value. 

Maximize this expectation as a function of *
!  to get a new value for ! , say )(t

! . 

Using this value for the true value of !  perform again the expectation step followed by 

the maximization step. Repeat these until there is no change in )(t
! . The above 

procedure works only when it guarantee converge. 

 

Choosing )(* t
!=! , find )1( +

!
t  which maximizes ( )*,!!Q , where the superscript t 

inside the bracket denotes step of iteration and )(t
!  denotes the parameter estimate !  

at loop t.  

 

The difference of log-likelihood between iterations can be written as 

( )Xl
t ;)1( +

!  - ( )Xl
t ;)(!   



- 18 -  

= [ ( )*)1( ,!!
+t

Q  - ( )*)1( ,!!
+t

R ] – [ ( )*)( ,!!
t

Q  - ( )*)( ,!!
t

R ]  

            = [ ( )*)1( ,!!
+t

Q  - ( )*)( ,!!
t

Q ] – [ ( )*)1( ,!!
+t

R  - ( )*)( ,!!
t

R ] 

 

Choose *
!  to be )(t

! , 

( ))()1( , tt
R !!

+  - ( ))()( , tt
R !!   

= ( )[ ])()1(

| ;|; tt

XZ
XZlE !!

+  - ( )[ ])()(

| ;|; tt

XZ
XZlE !!  

= ( )
( ) !

"

#
$
%

&
'

(
)
*

+
,
-

'

' +
)(

)(

)1(

| ;
;|

;|
log t

t

t

XZ
XZf

XZf
E  

<= ( )
( ) !

"

#
$
%

&
'

(
)
*

+
,
-

'

' +
)(

)(

)1(

| ;
;|

;|
log t

t

t

XZ
XZf

XZf
E  

= ( )
( )

( ) !
"

#
$
%

&
'

'

'
(

+

dzXZf
XZf

XZf t

t

t

Z

)(

)(

)1(

;|
;|

;|
log  

        = ( )!
+"

Z

t dzXZf )1(;|log  

        = 1log  

        = 0  

where the inequality follows from Jensen’s inequality that ( )[ ] ( )[ ]xEfxfE <=  if ( )xf  

is a convex function. Since the logarithm transformation is a convex function, it follows 

then that minus this difference ( ))()1( , tt
R !!

+  - ( ))()( , tt
R !!  is a non-negative value. 

Now the M-step of the EM algorithm is to choose )1( +
!

t  so that ( ))()1( , tt
Q !!

+  >= 

( ))()( , tt
Q !!  for any ! , including )(t

!=! . That means the difference ( )Xl
t ;)1( +

!  - 

( )Xl
t ;)(!  will be non-negative.  

 

 

This guarantees that the EM iteration never decreases the log-likelihood, and will 
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converge to a maximum (local or global) finally. EM algorithm maximizes ( )Xl ;!  

through maximizing ( ))(, t
Q !!  over parameter space of ! . That means EM algorithm 

will look at the complete data log-likelihood only. 

 

EM algorithm can be summarized by iteratively executing E-step and M-step, which 

starts with initial value of )0(*
!=! . The E-step is to find the conditional expectation of 

the latent variable Z estimated conditionally on the current parameter from last step. 

Instead of find the log-likelihood of data X, The M-step is the procedure of maximizing 

this conditional expectation of the complete data log-likelihood function ( ))(, t
Q !!  over 

all !  (i.e. ( ))()1( , tt
Q !!

+ >= ( ))(, t
Q !!  for all ! ). So as to get the next step parameter 

)1( +
!

t  at the loop (t+1). Repeat these until there is no change in )(t
! . 

 

 

3.2 EM for finite MVN mixture 

3.2.1 Estimation in general 

 

If the g component density functions are taken to be multivariate normal, the kth 

component multivariate normal density function, with mean vector 
k
u  and covariance 

matrix 
k

! , is written as 

( ) ( ) ( ) ( ){ }ki

T

kikkkiik uxuxuxxf
p

!"!!"="= !!! 1

2
12/1

exp2),|( 2#$  

 

The finite mixture model becomes a finite multivariate normal mixture with the form 

( ) ( )!
=

!="
g

k

kkikiMixture uxxf
1

,|| #$  
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where the parameter !  is written as { }
ggg

uu !!" ,...,,,...,,,...,
1111

##  

 

The likelihood of complete data can be written as: 

       ( ) ( )!
=

"#
n

i

ii ZXfZXL
1

,,;  

                  ( ) ( )i
n

i

ii ZfZXf!
=

=
1

|  

                  ( )[ ] ( )! !!
= == "

#
$

%
&
'

((
)

*
++
,

-
((
)

*
++
,

-
.=

n

i

g

k

Zik

k

g

k

Zik

kki ux
1 11

,; /0  

                  ( )[ ] ( )!!
= =

"=
n

i

g

k

Zik

k

Zik

kki ux
1 1

,; #$  

and the log-likelihood (up to an additive constant) is 

        ( )ZXl ,;! ( )( ){ }!!
= =

!+=
n

i

g

k

kkikik uxZ
1 1

,;loglog "#  

 

The EM algorithm simplified by introducing latent variable 

1=
ik
z , if and only if ki Groupx ! ; 

                          = 0, otherwise 

 

Note that conditional on X ,  is a Bernoulli random variable with probability 
ik
!  

for 1=
ik
z , therefore ( )

ikikikikXZ
zzzE !=="+="= )0Pr(0)1Pr(1|  

 

Hence, we get the conditional expectation of the log-likelihood as follows 

( )ZXlE
XZ

,;| ! ( ) ( )( ){ }!!
= =

!+=
n

i

g

k

kkikikXZ uxZE
1 1

| ,;loglog "#  
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                  ( )( ){ }!!
= =

!+=
n

i

g

k

kkikik ux
1 1

,;loglog "#$  

where 
ik
!  is the probability of observation i belonging to group k 

  

The expectation of ( )ZXl ,;!  over XZ |  based on current parameter choice *
!  is 

( )*,!!Q  

( )[ ]*| ;,; !!= ZXlE
XZ

 

[ ] ( )( ){ }!!
= =

!+"=
n

i

g

k

kkikiikXZ uxxZE
1 1

*

| ,;loglog;| #$  

( )( ){ }!!
= =

!+=
n

i

g

k

kkikik ux
1 1

*
,;loglog "#$  

{ } ( )( )!!!!
= == =

!+=
n

i

g

k

kkiik

n

i

g

k

kik ux
1 1

*

1 1

*
,;loglog "#$#  

{ } ( )( )!!!!
= == =

!+=
g

k

n

i

kkiik

g

k

n

i

kik ux
1 1

*

1 1

*
,;loglog "#$#  

{ } ( ) ( ) ( ){ }( )!!!!
= =

"""

= =

"#""#+=
g

k

n

i

kik

T

kikik

g

k

n

i

kik uxux
p

1 1

1

2
12/1*

1 1

*
exp||2loglog 2$%$%  

{ } ( ) ( ) ( ){ }!! !!!!!!
= = = =

""

= =

"

= =

"#""+#++=
g

k

n

i

g

k

n

i

kik

T

kiikkik

g

k

n

i

ik

g

k

n

i

kik uxux
p

1 1 1 1

1

2
1*2/1*

1 1

*

1 1

*
||log2loglog 2 $$%$%$

{ } ( ) ( ) ( ){ }!! !!!!
= = = =

""

= =

"#""+#++=
g

k

n

i

g

k

n

i

kik

T

kiikkik

g

k

n

i

kik uxux
np

1 1 1 1

1

2
1*2/1*

1 1

*
||log2log

2
log $$%%$  

where *

ik
!  is the probability of observation i belonging to group k based on the current 

parameter choice *
! , and can be calculated by 

( )
} ( )
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Find the estimated !
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(The first two terms don’t depend on j
! , and can be dropped in the maximization 

problem) 
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(Any term not including j
!  can also be dropped) 
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So maximizing ( )*,!!Q  with respect to j
!  is equivalent to maximizing the above 

expression with respect to j
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Theorem 1: For any pp!  p. d. matrix S, and positive constants a and b,  

( )[ ]{ } { }pbbaSStra
bb

!"#!#
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exp/exp 1  

or  

( )[ ] pbbaSbStrab !!"#!#!
! /loglog 1  

or  

( )[ ] pbbaSbStrab +!"+"
# /loglog 1  

for all pp!  p. d. matrices !  with equality holds if and only if baS /=! . 

Proof: See Srivastava and Khatri (page25, 1979) 
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For the purpose of computational efficiency, the final component parameter estimates can 

be simplified by introducing the statistics  
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3.2.1.1 Some useful consequences of Theorem 1 

 

Corollary 1: The pp!  symmetric matrix M  such that 1=M  minimizing 

( )1!QMtr  where Q is a symmetric positive definite matrix is  

pQ

Q
M

1
= , 

and the minimized value is pQp
1

. 

 

Proof: Consider finding the pp!  p. d. matrix ! , which minimizing ( )Str
1log !

"+" , 

for any pp!  p. d. matrix S . This is a special case of Theorem 1, when a=b=1. Now 

let, without lost of generality, M!=" , where 1=M  and 0>! . Then we consider 

finding !  and M , which minimizes  

( ) ( ) ( )SMtrMpSMtrM
1111 logloglog !!!! ++=+ """"  

                     ( ) ( )SMtrMp
11loglog !!++= ""  

                     ( ) ( )SMtrp
11log !!+= ""  

Minimizing first with respect to M is equivalent to minimizing ( )SMtr
1! . So to find M, 

which minimizes ( )SMtr
1! , we need only minimizing ( ) ( )SMtrp

11log !!+""  with 

respect to M and ! . From Theorem 1, ( ) ( )SMtrp
11log !!+""  is minimized with 
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Corollary 2: The pp!  diagonal matrix M  minimizing ( ) MQMtr log1 !+"  where 

Q  is a symmetric p. d. matrix and !  is a positive real number is ( ) ( )QdiagM !
1= . 

 

Proof: This is a special case of Theorem 1, when !=
a

b , M=!  and QS = . 

( ) MQMtr log1 !+"  get its minimum when QQ
b

a
M

!

1
== . 

 

Suppose M  is a diagonal matrix, then 1!
M  is also a diagonal matrix. Since  

( ) ( ) MQMtrMQMtr loglog 11 !! +=+ ""  

                 ( )( ) MQdiagMtr log1 !+= "  

Find M , which minimizes ( ) MQMtr log1 !+" , is ( ) ( )QdiagM !
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Theorem 2: The orthogonal matrix Q , minimizing ( )BQAQtr
1!  where A  and B  are 

diagonal matrices, with general diagonal term j
!  and j

!  such that 
p

!!! """ ...
21

 

and 
p

!!! """ ...
21

, is the identity matrix and the minimized value is 
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=

=
p

j
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Proof: See theorem 1 of Celeux and Govaert (1994) 
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3.2.2 Estimation via geometric decomposition 

 

When the covariance matrix is non-singular, Banfield and Raftery consider a variant of 

the standard spectral decomposition of a covariance matrix, namely: 
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Already known maximize function ( )*,!!Q  with respect to !  is equivalent to 
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Eight different covariance structures were considered by Banfield and Raftery. Refer 

back to section 2.2, each one results in a different value of ( )*1 ,,...,| !
n
xxF "  

 

3.2.2.1  Structure I
k

!="  

 

This is the simplest structure where every covariance has spherical shape and equal 

volume. 
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F  with respect to ! , we get ( )
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3.2.2.2  Structure I
kk
!="  

 

This is the second simplest structure where every covariance has spherical shape and 
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different volume. 
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3.2.2.3  Structure T

k
ODO!="="  

 

This is the structure where all covariance are the same without any constrict about shape 

and orientation. 
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where W  is as before. This quantity has the structure of Theorem 1. Let nb = , 1=a , 

and WS = . So the minimum is achieved if and only if 
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3.2.2.4  Structure C
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!=" , where T

ODOC = , ( ) 1det =D  

 

This is the structure where every covariance has the same shape and orientation, but 

different volume. 
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The minimization of 
4
F  has to be performed iteratively. 

1. As the matrix C is kept fixed, the 
k
! ’s minimizing 

4
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By setting the first derivative to 0, we get the estimate: 
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2. As the volumes 
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! ’s are kept fixed, the matrix C minimizing 

4
F  is minimizing 
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3.2.2.5  Structure 
T

kkk
DOO!="  

 

This is the structure where every covariance has the same shape and volume, but with 

different orientation. 

( )*1 ,,...,| !
n
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Let T
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LLW !=  be its eigenvalue decomposition, then 
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1

1
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Now 
5
F  can be written as ( ) ( )!

!
log

1

1

1 npBAQQtr
g

k

T

kk +"
=

# , where 
k

A != , 1!
= DB , 

and k

T

kk LOQ =  is an orthogonal matrix. 
5
F  can be minimized by minimizing each of 

( )1!BAQQtr
T

kk . 

 

By Theorem 2, the minimum occurs when IQk =  or 
kk
LO = . In this case 

( ) ( ) ( )111 !!!
"== DtrABtrBAQQtr k

T

kk  and so 
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By Corollary 1, minimizing 
5
F  with respect to D  and !  are 
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3.2.2.6  Structure 
T

kkkk
DOO!="  

 

This is the structure where every covariance has same shape, but with different 

orientation and volume. 

( )*1 ,,...,| !
n
xxF "  
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Since T

kkkk
LLW != , the optimal 

k
! , 

k
O , D  are solutions of the equations to be 

solved iteratively 
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k

T
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k
p

ODOWtr

!
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and 

kk
LO =
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By Corollary 2, let !
=
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g

k

k

k

Q
1
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3.2.2.7  Structure T

k

T

kkk
OOAOOD ==! " , where kkk

DA !=  

 

Notice that 
kk

A != , this is the structure where every covariance has the same shape 

and volume, but with different orientation. 
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log#  

The minimization of 
7
F  has to be performed as follows. 

 

1. For fix O, minimizing 
7
F  with respect to jA  is equivalent to minimizing  

( ) !
=

"
+

n

i

kikk

T

k
AOWOAtr
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log#  

 

By Corollary 2, let j

n

i

ij
a !! =="

=1

, jAM = , and OWOQ k

T
= . For fixed O, minimizing 

7
F  with respect to jA , we get: 

( )OWOdiagA j

T

j

j
!

1
=

)
, gj ,...,1=  

 

2. For fixed ( )pkkkkkk diagDA !!"" ,...,
1

== , for gk ,...,1=  minimizing 
7
F  with 

respect to O is equivalent to minimizing 

( ) ( ) ( )!!
=

"

=

"
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g

k
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T
g

k

T

kk OAWOtrOOAWtrOh
1

1

1

1  

Which is shown can be done by a variant of algorithm of Flury (1986) as follows: 

Step 1: Start with initial solution matrix ( )
pooO ,...,

1
= , where 

p
oo ,...,

1
 are mutually 

orthonormal. 

Step 2: For any indices { }pml ,...,1, ! , where ml ! , the pair ( )
ml
oo ,  is replaced with 

any pair ( )
ml

!! ,  where 
l
!  and 

m
!  are orthonormal vectors, each a linear 

combination of 
l
o  and 

m
o , minimizing the above criterion ( )Oh . This can be obtained 

by the following procedure: 
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We have 
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Now we introduce new orthonormal vectors ( )
ml

!! ,  to replace  as follows 

( )
1

, qoo mll =! ,  

and 

( )
2

, qoo mlm =! , 

where 
1
q  and 

2
q  are vectors to be determined 

 

Note that: 
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q  are two orthonormal vectors as well.  
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Denote ( )
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Repeat step 2 until produces no decrease of the criterion. 
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3.2.2.8  Structure 
T

kkkkk
ODO!="  

 

This is the structure where every covariance has different shape, different volume, and 

different orientation. 
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n

i
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k
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#
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)
, and so we can get the estimates 

k
! , 

k
O  and 

k
D  

by eigenvalue decomposition. 
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Table 2: Parameter estimation for geometric covariate matrix decomposition 
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3.2.3 EM procedure in finite MVN mixture 

 

The EM algorithm for a mixture of multivariate normal can be expressed as the following 

procedure:  

 

Initialize )0(
! . Take ( )

gggg
111)0()0(

2

)0(

1

)0(
,...,,),...,,( == !!!! . The kth mean vector 

xu
k

=
)0( , the overall sample mean for all group. The kth covariance matrix S

k
=!

)0( , 

the overall sample covariance matrix for all group. 

 

E-Step: A conditional expectation of the group membership for each observation can 

be evaluated by calculating  
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M-Step: Compute sufficient statistics by 
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Loop back to the E-step until the following convergence criteria are met at once 

threshold
t

k

t

k
<=!

! )1()(
ˆˆ "" , for k= 1,…,g 

thresholduu
t

k

t

k
<=!

! )1()(
ˆˆ , for k=1,…,g 

threshold
t

ij

t

ij <=!"!
" )1()( ˆˆ , for k=1,…,g and any ij conbination 
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Notice that the M-Step can use the result of section 3.2.2 if a parsimonious 

decomposition is considered. 

 

Here, the first phase is to choose a good starting point. A poor starting point might make 

the convergence process very slow or even make the sequence of estimates diverge if it is 

chosen too close to the boundary. A good starting point would be one, which led to faster 

convergence and avoided local maxim. There is also no guarantee that the maximum 

achieved is global. 

 

When there is no a priori good choice for a starting value, the start is sometimes chosen at 

random or perhaps from the output of a clustering procedure. Suppose for example 

k-groups are then produced since it can be interpreted as a parsimonious model, a simple 

independent Gaussian distribution with equal volume spherical covariance structure. In 

the clustering context, the EM algorithm for mixture models is usually initialized with a 

hierarchical clustering step (Dasgupta and Raftery, 1998; Fraley and Raftery, 1998).  

 

The threshold stopping criterion needs to be set small enough to make sure the maximum 

value is obtained. In choosing a threshold, there is a trade-off between convergence time 

and accuracy, since EM will converge very quickly and will converge faster in the 

beginning. A better accuracy will definitely need extra step to run the program.  
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4. Gibbs Sampler 
4.1 Gibbs in general 

 

Estimation in a Bayesian framework is also feasible using posterior simulation via 

Markov Chain Monte Carlo (MCMC) method. Bayes estimators for mixture models are 

well defined as long as the conjugate prior distributions are proper.  

 

For each model ( )
d

!!!=! ,...,,
21

, we define a neighbourhood ( )!nbd  consisting of 

!  itself and the models which differ from !  by just one parameter. A transition 

probability T is defined by setting ( ) 0
' =!"!T  for all ( )!"! nbd

' , and ( )'!"!T  

constant for all ( )!"! nbd
' .  

 

The Gibbs Sampler, formally introduced by Geman and Geman in 1984, is an algorithm 

for extracting the marginal distribution from the conditional distribution. We need to 

draw a sample of the parameters from the full mixture distribution function, which we do 

not know how to do. However we do know how to draw a sample from the conditional 

distribution function of each parameter given the others.  

 

Start with the current state ( )
d

!!!=! ,...,,
21

 in d-dimensional space, and consider a 

new state N  in the chain 

( )
dqqq NN !!!!!= +" ,...,,,,...,,

1121
 

where the only difference between state !  and state N  is the value of the qth 

parameter in the vector with all others the same. The conditional probability of qN  

given ( )
dqqq !!!!!=! +"" ,...,,,...,,

1121
 will be written as 
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( ) ( )
dqqqqq NN !!!!!=! +"" ,...,,,...,,|| 1121##  

 

The transition probabilities are  

( ) ( )
qqNNT !"=#" |$   

and  

( ) ( ) ( )
qqqq NNT !! ""="="# || $$ , since qqN !! "=  

 

Consider drawing the sample ( )
d

!!!=! ,...,,
21

 from joint probability function ( )!" . 

The detail process of getting the parameter ( )
d

!!!=! ,...,,
21

 using Gibbs sampler is 

as follows: 

 

Start with an initial value ( ))0()0(

2

)0(

1

)0( ,...,,
d

!!!=! , for each iteration we execute the 

following d step as follows 

Step 1: Draw sample ( ))()(

21

)1(

1 ,...,;|~
k

d

kk
Xf !!!!

+  

Step 2: Draw sample ( ))()(

3

)1(

12

)1(

2 ,...,,;|~
k

d

kkk
Xf !!!!!

++  

… 

Step d: Draw sample ( ))1(

1

)1(

2

)1(

1

)1(
,...,,;|~

+

!

+++
"""""

k

d

kk

d

k

d Xf  

 

Continue the above procedure, we get the Gibbs sampler after a burn-in process. Madigan 

and York (1992) reported that this process is highly mobile and that runs of 10,000 or 

less are typically adequate. The vector sequence ( )
d

!!!=! ,...,,
21

 thus generated is 

known to be a realization of a homogeneous Markov Chain. The above procedure was 

proven to converge in distribution to the true posterior distribution of ( )
d

!!!=! ,...,,
21

 

by Diebolt and Robert (1994). Raftery (1992) gave a method for determining the number 
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of iterations to be dropped in the burn-in process and the minimum number of iterations 

needed to be run beyond burn-in. All steps beyond burn-in provide data which can be 

used to produce an estimate (e.g. histogram) of the joint distribution. 

 

Here, all parameters are treated as random variables with joint probability function ( )!f . 

Instead of estimating these parameters by EM, we can approximate the parameter 

distribution by building the histogram of a sample. This joint distribution sample 

approximation can be approached by sampling from the conditional distributions. It turns 

out that after discarding the first initial sample, the following sample is an approximation 

of sample from the joint distribution function. 

 

 

4.2 Gibbs in MVN 

4.2.1 Posterior distribution 

 

If the distribution is a multivariate normal mixture of g components, the parameter vector 

is 

{ }
ggg

uu !!" ,...,,,...,,,...,
1111

##  

 

Simulate the unknown joint distribution ( )ggg uuf !!" ,...,,,...,,,...,
1111

##  by 

simulating the conditional distribution function as follows: 

( )gguuXf !! ,...,,,...,;|~ 11""  

( )ggjjgij uuuuXufu !!+"" ,...,,..,,,...,,,...,;|~ 111111 ##  

( )gjjggij uuXf !!!!!! +"" ...,,,...,,,..,,,...,;|~ 111111 ##  
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With prior distribution: ( )gDirichlet !!!!" ,..,,~| 11 , the conditional proportion is 

defined as ( ) ( )ggi nnnDirichletzf +++= !!!" ,...,,| 2211 , where 
i
z  is the indicator 

vector defined as before.  

 

Let 
k

!  be the kth mean vector, !
=

=
n

i

ikk

1

"" , and ( )( )
kkkkkkk

nun !"!" ++= / . The 

conditional distribution for group mean and covariance matrix are given by Diebolt and 

Robert (1994), see also Bensmail et al (1996), which is shown in table 3 and table 4. 

 

4.2.2 Gibbs sampling in finite MVN mixture 

 

Initialize )0(
!  using the same procedure of EM. 

   Set 1=
k

! , where gk ,...,1= . And ( )
gggg
111)0()0(

2

)0(

1

)0(
,...,,),...,,( == !!!! . 

 

Bayesian Step: Calculate  
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% , for i=1, …, n,  

where 
ik
!  is the probability the observation i belong to group k, given current 

parameters 

 

Simulation Step: 

[1] Simulate each 
i
z  according to uniform distribution 

( ) ( ),,..,,|Pr
)()(

1

)(

1

)()( t

ig
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ik
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i Unifz !!!! = , for i=1,…n, 

[2] Simulate ( ))()(
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)(
,...,,

t

g

ttt
!!!! =  according to  
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( ) ( )gg

t

i

t
nnnDirichletz +++= !!!" ,...,,|Pr 2211

)()(  

[3] Simulate ( ))()(

1

)()(

1

)(
,..,;,..,

t

g

tt

g

tt
uu !!="  according to ( ))()(

|Pr
t

i

t

z!  

a. Simulate ~,|
)()()( tt

k

t

k
zu ! from the corresponding conditional distribution 

from table 3. 

b. Simulate ~|
)()( tt

k
z!  from the corresponding conditional distribution from 

table 4. 

Loop back to Bayesian step until the following convergence criteria are met together 

 for all k 

thresholduu
t

k

t

k
<=!

! )1()(   for all k 

threshold
t

ij

t

ij <=!"!
" )1()(  for all ij combination 

 

Note: the conditional distribution only updates one parameter each time conditional on all 

other parameters are fixed, and need to be simulated according to the sequence above. 

 

Based on different model assumptions, we have 5 common methods to do the simulation. 
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1 ,rIg  is Inverse Gamma distribution function, and ( )nWp ,
1 !"  is Inverse 

Wishart distribution function. 
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5. Model-based Clustering 
 

Suppose the number of cluster is known, the parameters are fit, and we can cluster by EM 

algorithm. In the end of the iterative procedure, we have the convergence value for all 

parameters and the fitted posterior probabilities igii
!!! ,...,,

21
 for component membership 

probability of each observation. Then each observation is assigned to the group with the 

maximum conditional probability, which can be accessed by the component label vector 

( )
igiii
zzzz ,...,,

21
= , as defined below 

1
)(
=

t

ik
z , if },..,,max{

)()(

1

)(

1

)( t

ig

t

i

t

i

t

ik !!!! =  

                        = 0, otherwise 

 

All that needs is to choose the parameter structure as table 1. This all works if g is known 

but what if g is unknown. We will introduce how to select the model as follows. 

 

5.1  Model selection 

5.1.1 General procedure 

 

But the problem is that EM algorithm works only when the number of cluster is specified, 

which is the basic assumption. That is to measure the probability ( )kXf !|  given 

k
M (model k), where k is the index of model. Since both the number of cluster and the 

model need to be specified to run EM for clustering. We need to find a way to select the 

number of cluster and model together. That is to measure the integrated likelihood 

( )Xf k |!  instead of just ( )kXf !|  for a specific model. Here Banfield and Raftery 

proposed to use 8 covariance structures for 8 kinds of models, and this may be extended 

to more general case.  
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In Banfield and Raftery’s approach, each combination of different specification of the 

covariance matrix and different number of clusters corresponds to a separate probability 

model. The probabilistic framework of model-based clustering allows the issues of 

choosing the best clustering model and the correct number of clusters to be reduced 

simultaneously to a model selection problem. This is important because there is a 

trade-off between probability model (and the corresponding clustering method) and 

number of clusters. It is easy to see that a complex model only needs a small number of 

clusters, but a simple model may need a larger number of clusters to fit the data 

adequately. 

 

Suppose that K models, 
K

MMM ,...,,
21

, are being considered, each a different model 

with a different number of clusters and parameters. Take a simple example of comparing 

two models 
i

M  and jM , here i and j are model indexes. In order to access the model 

i
M  and jM , we measure the posterior probability of different models given data X. 

Then, by Bayes’ theorem, the posterior probability of 
i

M  is  

( ) ( ) ( ) ( ) ( )!
=

=
K

k

kkiii MfMXfMfMXfXMf
1

|/|| , 

and the posterior odds for comparing model 
i

M  to model jM  is  

( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )!

!

=

==
K

k

kkjj
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When all models are assumed to have equal prior probabilities, the odds become 

( ) ( )jiij MXfMXfB |/|= , which is the Bayes factor defined by Kass and Raftery (1995) 

as the ratio of the integrated likelihoods of the two models ( ) ( )jiij MXfMXfB |/|= . 

In other words, the Bayes factor ijB  represents the posterior odds that the data are 

distributed according to model 
i

M  against model jM , assuming that neither model is 

favoured a priori (ie. ( ) ( )ji MfMf = ). If ijB  > 1, model 
i

M  is favoured over jM . 

The method can be easily generalized to more than two models. 

 

To determine the Bayes factor, we require the integrated likelihood of model 
k

M , given 

as  

( ) ( ) ( ) kkkkkk dMfMXfMXf !!!= " |,||  

where jik ,=  and ( )kk Mf |!  is the prior distribution of 
k

! . This integrated 

likelihood represents the probability that data X  is observed given that the underlying 

model is 
k

M . Two approaches are considered in the evaluation of the integrated 

likelihood. 

 

5.1.2 Approach 1 - Bayesian Information Criterion 

 

Here, we use an approximation called the Bayesian Information Criterion (BIC; Schwarz, 

1978)  

( ) ( ) ( ) BICnvMXfMXf kkkk =!"# log,ˆ|log2|log2  

where 
k
v  is the number of parameters to be estimated in Model 

k
M , and 

k
!̂  is the 

maximum likelihood estimate of parameter vector 
k

! . Intuitively, the first term, which 



- 53 -  

is the maximized mixture likelihood for the model, rewards a model that fits the data well, 

and the second term discourages over fitting by penalizing modes with more free 

parameters.  

 

Hence, we get ( ) ( ) ( )jiij MXfMXfB |log|loglog != ( )
ji BICBIC !=

2

1  

If ji BICBIC >  then ( ) 0log >ijB , ie. 1>ijB . Model i is better than model j. 

 

A large BIC score indicates strong evidence for the corresponding model. The BIC score 

can be used to compare models with different covariance matrix parameterizations and 

different numbers of clusters. Usually, BIC score differences greater than 10 are 

considered as strong evidence favoring one model over another (Kass and Raftery, 1995). 

 

5.1.3 Approach 2 - Laplace Approximation 

 

( )kk Mf |!  can be calculated by the Laplace approximation (Tierney and Kadane 1986) 

( ) ( ) ( ){ }*exp2 2

1

2 ugAdue
dug !"# , 

where *

u  is the value of u  at which g  attains its maximum, and A is minus the 

inverse Hessian of g  evaluated at *

u .  

 

Let 
k

u != , !=A , ( ) ( ) ( ) ( )[ ]kkkkk MfMXfgug |,|log !!=!=  or  

( ) ( ) ( ) ( )kkkk

gug
MfMXfee k |,| !!==

!  

Apply the Laplace approximation to the above equation, yields 

( ) ( ) ( ) kkkkkk dMfMXfMXf !!!= " |,||  

              ( ) ( ) ( )kkkk MfMXf
d

|,|2 2

1

2 !!"
))

#$  



- 54 -  

where d is the dimension of 
k

! , 
k

!
)

 is the posterior mode of 
k

! , and !  is minus the 

inverse Hessian of ( ) ( ) ( ){ }kkk fXfg !!=! |log , evaluated at 
kk

!=!
)

.  

 

In many practical situations, an analytical solution is not available. Raftery (1996a) has 

suggested to use the Gibbs sampling, a special case of Metropolis-Hastings algorithm, to 

find the estimates for 
k

!
)

 and !)  by using posterior simulation to estimate the 

quantities it needs. The whole procedure is called Laplace-Metropolis estimator. The 

Laplace method requires the posterior mode, 
k

!
)

 and !) . To estimate 
k

!
)

 from 

posterior simulation output, and probably the most accurate, is to compute ( )( )tkg !  for 

each t=1,…,T. and take the largest value, or just simply use the posterior mean or median. 

The matrix !)  is asymptotically equal to the posterior covariance matrix, as sample size 

tends to infinity, and so it would seem natural to approximate !  by the estimated 

posterior covariance matrix from the posterior simulation output. To avoid the MCMC 

trajectories, Banfield and Raftery (1997) use the weighted covariance matrix estimated 

with weights based on the minimum volume ellipsoid estimate of Rousseeuw and van 

Zomeren (1990).  

 

 

5.2  Clustering procedure 

5.2.1  Clustering by EM 

 

A comprehensive clustering strategy based on EM and Bayes factor is proposed by 

Banfield and Raftery (1993) as follows: 

1. Set a maximum for the number of clusters, which is usually less that 10. A set of 

mixture models, say, a subset of 8 covariance structures is considered. 
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2. Perform hierarchical agglomeration to approximately maximize the classification 

likelihood for each model, and obtain the corresponding classifications for up to M 

groups.  

3. Apply EM algorithm for each model and each number of clusters 2,…,M, starting 

with the classification result from hierarchical agglomeration. 

4. Compute BIC for the one-cluster case for each model and for the mixture model with 

the optimal parameters from EM for 2, …, M clusters. 

5. Choose the model corresponding to the largest BIC. 

 

Although BIC works fairly well in practice, it is quite crude. More accurate 

approximation to Bayes factors can be obtained from Gibbs sampler output using the 

Laplace-Metropolis estimator (Raftery 1996). This is shown to give accurate results by 

Lewis and Raftery (1997). 

 

5.2.2  Clustering by Gibbs sampling 

 

Apply the same procedure as section 5.2.1, the Gibbs sampling output can used to choose 

the parameter and the number of cluster together. The algorithm is then as follows: 

1. Set a maximum for the number of clusters, which is usually less that 10. A set of 

mixture models, say, a subset of 8 covariance structures is considered. 

2. Perform hierarchical agglomeration to approximately maximize the classification 

likelihood for each model, and obtain the corresponding classifications for up to M 

groups.  

3. Apply Gibbs algorithm for each model and each number of clusters 2,…,M, starting 

with the classification result from hierarchical agglomeration. 

4. Compute integrated likelihood from Gibbs sampling output in last step. For the 

one-cluster case for each model and for the mixture model with the optimal 
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parameters from Gibbs sampling for 2, …, M clusters. 

5. Choose the model corresponding to the largest integrated likelihood. 

 

 

5.3  Clustering software 

 

Some useful packages are available in statistical software R for free to download as 

follows: 

 

5.3.1  MCLUST - Model-based cluster analysis 

 

Fraley and Raftery implemented model-based clustering function called EMCLUST 

using EM-BIC approach. A list of useful function and corresponding syntax are as 

follows: 

 

Hierarchical Clustering 

Syntax: hc (modelName=’EII’, data, …) 

By setting Model Name = “EII”, the covariance structure is specified as spherical and 

equal volume, correspond to the first model of the table 1. 

 

The initial parameter can be obtained by model-based hierarchical clustering by the 

function hc. By specifying the simplest model in hierarchical clustering. A class label can 

be used in the following m-step.  

 

Parameterized gaussian mixture models 

estep – individual E-step of EM algorithm 

mstep – individual M-step of EM algorithm 
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em - EM iterative (starting with e_step and then m-step and etc.) 

me – EM iterative (starting with m-step and then e-stop and etc.) 

 

Since EM algorithm can be start with either E-step (followed by M-step) or M-step 

(followed by E-step), the second step will be mstep (the function of individual M-step of 

EM algorithm followed by the result of hc function). Then run mstep function 

alternatively until converge. The above iterative procedure can also be substituted by a 

simple me function (EM algorithm starting with m-step). 

 

Plotting functions 

CoordProj(data, dimens, type, …) 

clPairs (data, classification, symbols, label) 

 

coordProj function coordinates projections of data in more than two dimensions modeled 

by an MVN mixture 

clPairs function can creates a scatter plot for each pair of variables in given data, 

observations in different classes are represented by different symbols. 

 

BIC for model-based clustering 

Emclust (data, G, emModelName, hcPairs, subset, eps, tol, itmax, equalPro, warnSingular, …) 

 

The whole procedure can also be run automatically by just use the emclust function. It 

can execute the above procedure in an integrated way, compare difference model and 

give users the best model and parameters. 

 

5.3.2  MCMCpack - Markov chain Monte Carlo (MCMC) package 
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Some useful simulation functions: 

rdirichlet (n, alpha): Generate the dirichlet distribution with n random vector with 

parameter alpha 

rinvGamma(n, shape, scale=1): Generate the inverse gamma distribution with n draw 

and the scale shape parameter  

riwish(v, S):  The Inverse Wishart Distribution with v is the degree of freedom and S is 

pxp scale matrix 

  

5.3.3  McGibbsit - Run-length diagnostic for Gibbs sampler 

 

read.mcmc (nc, sourcepattern, col.name, start=1, end=nrow(tmp), thin=1) 

mcgibbsit (data, q=0.025, r=0.0125, s=0.95, converge.eps=0.001, correct.cor=TRUE) 

 

read.mcmc function can be used to read in data from a set of MCMC runs 

mcgibbsit function can be used to diagnostic Functions for deciding the number of 

burn-in step and the stopping step are as follows: 
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