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Abstract

Background:

The presence of heritable mutations in hMSH2 or hMLH1 genes is highly predictive
of the development of colorectal cancer although it is rare. One published estimate is
0.03% of the Scottish population for mutations in the hMSH2 and hMLH1 genes. (5, MG
Dunlop et al., 2000, p.1643)

Purpose:

A mathematical model for calculating the probability that a person with a family
history of colorectal cancer carries a mutation of hMSH2 or hMLH1 is developed and
applied. This model is the analogy of the one developed in the BRACAPRO paper (2,
D.A. Berry et al., 1997, pp.227-237).

Methods and Results:

Mendelian genetics and probability theory are used to model the information of the
family history of colorectal cancer. The pedigree of the family members is of great
importance. For example, a person with a long family history of colorectal cancer will
have a greater probability of carrying the mutation than a person with no family history of
colorectal cancer. And so, the relationships of all family members can have a substantial
impact on the probability of carrying the mutation gene. Other important determinants
which might affect this probability include the ages at diagnosis of cancer of affected
family members, the number and relationships of members free of cancer, and their
current ages or ages at death.

Estimates of hMSH2 and hMLH1 mutation frequencies in the general population are
available as are age and sex specific incidence rates of colorectal cancer, for both carriers
and non-carriers. These are used to estimate the probability that a particular member
of the family carries a mutation.

The model is illustrated for a few simple cases. First the case of a single individu-

als(with and without cancer) having no family history available. Then two artificial and



one actual family histories are to be considered and the sensitivity of the calculations to

various assumptions is addressed.

Conclusion:

This model gives informative and specific probabilities that a particular person carries

mutation in hMSH2 or hMLH1 genes.
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Chapter 1

Introduction

Colorectal cancer is the third most common cancer and the third most common cause
of death from cancer for both men and women. In 2003, there were 18100 new cases,
9800 new cases and 4400 deaths among men, and 8300 new cases and 3800 deaths among
women (3, Canadian Cancer Statistics 2003, Table 1, p.19). There exists some genetic
mutation genes (e.g. hMSH2 and hMLH1) among a very small proportion of general
population. Those with mutation genes have a high probability of developing colorectal
cancer. The life time risk of colorectal cancer was 80% for hMSH2/hMLH1 mutation
gene carriers (4, HF.A Vasen et al., 1996, p.1020). Those who have mutation genes are
well advised to undergo colonoscopies every six months. Because a colonoscopy is an
invasive procedure, it is not likely to be entertained unless there is strong evidence that
the person is in fact a carrier. Unfortunatedly it is not always possible to determine with
certainty that a person is a carrier. And the potential risks such as psychological distress,
restriction of life, and disability insurance and so on, which are associated with genetic
testing, make a decision of whether to proceed with testing difficult. The objective of the
model is to produce a probability of being a carrier given the available information on
the people so that people are supplied with more information before they go for a genetic
testing. Because the mutation is inheritable, and the high penetrance of colorectal cancer

among people with hMSH2 or hMLH1 mutations means that family history of this disease



is a strong indicator of whether a mutation is present in the family.

The family structure is given by a pedigree as shown in Figure (1.1). Those square
nodes represent male, circle nodes represent female. Color of the nodes represents cancer
status of the person. A node in grey means this person had been diagnosed with colorectal
cancer, while a node in white means this person is free of colorectal cancer. If there is
a diagonal slash across the node, it means that individual is dead. Otherwise means
they are alive. The number following a capital letter “C” is the age at diagnosis with
colorectal cancer. The number following the word ”age” is the current age if this person
is alive or age at death if this person had died already. Straight line connecting a male
and a female means that they are a couple. The vertical line leads to the nodes of their
children. For example, in Figure (1.1), member 9 is male, who had been diagnosed with
colorectal cancer at the age of 36, and had died at the age of 40. He married with member
10 and had a daughter who is member 6. Among the three children of member 6 and 7,
two of them (member 3 and 4) had been diagnosed with colorectal cancer.

A model will be developed to produce the probability that a particular family member
carries a mutation at hMSH2 or hMLH1 based on their faimly history. More specifically,

the model will produce:

Pr(M; = M|C;, A;, S5, fo (i), fa(i), fs(i), Ty)

where M; is the mutation status of individual 7, M; = M means that individual 7 is a
mutation carrier; C;, A;, Si, fc (i), fa(?), fs(¢) and T; are the information on individual
¢ and the family, which will be introduced later in Chapter 4. Thus, an estimate of
the probability of being a carrier can be produced for any individual given the available
information on themselves and their family history. If this probability estimate is large,
then some or all of the following might be considered: 1. colonoscopies might be rec-
ommended (depending on probability and expense); 2. the patient might be tested for
the known mutations (depending on expense and specificity and sensitivity of the genetic

test which are to be introduced in Chapter 6); 3. If the person tests negative on the
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known mutations, the person (or other family members) might be considered for further
(and possibly longer term) research to possibly discover a new mutation. Similarly if the

probability is very small, no such precedure might be recommended.



Chapter 2

Modelling

The main purpose of this essay is to develop and apply a mathematical model for
calculating the probability that a person with a family history of colorectal cancer is a
mutation gene carrier. The model will first be described by considering single individuals:
a person with unknown cancer status, a person free of colorectal cancer and also a person
diagnosed with colorectal cancer. Then, two artificial and one actual family histories are

to be considered in Chapters 4 and Chapter 5.

2.1 Three simple examples

2.1.1 Individual with unknown cancer status

A simple case would be a 40-year-old man whose cancer status is unknown. And we
have no information about his other family members. The probability for him to be a
hMSH2/hMLH1 mutation gene carrier with his cancer status unknown is same as the
estimated population mutation gene carrier frequency Pr(M; = M) ~ 0.00032 (5, MG
Dunlop et al., 2000, p.1643) if the assumption has been made that the proportion of
mutation carriers is same at all ages. This assumption may not be correct since those
who are mutation carriers tend to die earlier compared with noncarriers. Unfortunately

it is very hard to estimate the proportion of mutation carriers at all ages at this moment.



2.1.2 Individual free of Colorectal Cancer

Suppose we have a single individual who is free of colorectal cancer and beyond this
all that is known about the person is their sex and their age. The probability that
this individual is a mutation gene carrier given their current age or age of death will
be calculated. This situation typically is of special interest since usually those who are
cancer free tend to have more interest in knowing the probability for them to be mutation
carriers.

Suppose the person is a 60-year-old woman and she is free of colorectal cancer. Sup-
pose we have no information about the other family members. The probability for her
to be free of colorectal cancer by the age of 60 given she is a hMSH2/hMLH1 mutation
gene carrier is:

Pr(free of colorectal cancer by 60|M,Female)=Pr(H|M)

Thus the probability for her to carry mutation genes given her gender and being free
of colorectal cancer by the age of 60 could be calculated as follows:

Pr(H|M; = M)  Pr(M; = M)
Pr(H)

Pr(M; = M| H) = (2.1)

where M; is the mutation status of individual 2, M; = M means this individual 7 is a
mutation gene carrier, and H stands for “being free of colorectal cancer by the age of

60”. Equation (2.1) could be rewritten as:

Pr(M; = M|H)
B Pr(H|M; = M)  Pr(M; = M) 22)
"~ Pr(H|M; = M) % Pr(M; = M) + Pr(H|M; = M) « Pr(M; = M) '
Pr(H|M;=M)
_ Pr(H|M;=M) (2.3)

Pr(H|M;=M) + 1-Pr(M;=M)
Pr(H|M;=M) Pr(M;=M)

Dividing both numerator and denominator of equation (2.2) by Pr(H|M; = M)+Pr(M; =

M) will get equation (2.3).



We need to determine three individual probabilities: Pr(H|M; = M), Pr(H|M,; =
M) and Pr(M; = M). Estimates of the cumulative proportion of being diagnosed with
colorectal cancer by any given ages are available in the literature of Dunlop (6, MG
Dunlop et al., 1997, p.107). He gave these for each sex and each mutation carrier status.
Let Bas(Age, Gender) be the cumulative proportion of being diagnosed with colorectal
cancer by the given age for mutation carriers, and By;(Age, Gender) be the cumulative
proportion of being diagnosed with colorectal cancer by the given age for non-mutation
carriers. These cumulative risk curves are shown in Figure (2.1) and (2.2) - A, C. The
estimation of Dunlop shows that male carriers has higher risk of colorectal cancer than

female carriers if they are at the same age.
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Figure 2.1: A) Cumulative risk of colorectal cancer for female mutation carriers. B)
Age-specific incidence of colorectal cancer for female mutation carriers. C) Cumulative
risk of colorectal cancer for female noncarriers. D) Age-specific incidence of colorectal
cancer for female noncarriers.
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Figure 2.2: A) Cumulative risk of colorectal cancer for male mutation carriers. B) Age-
specific incidence of colorectal cancer for male mutation carriers. C) Cumulative risk of
colorectal cancer for male noncarriers. D) Age-specific incidence of colorectal cancer for
male noncarriers.



Thus equation (2.3) can be rewritten as:

1—Bps(60,Female)

1—B5;(60,Female)
1—Bps(60,Female) + 1—Pr(M;=M)
1—B37(60,Female) Pr(M;=M)

Where 1 — By (60, Female) is the probability for a female to be free of colorectal
cancer by the age of 60 given she is a hMSH2/hMLH1 mutation gene carrier, and
1 — B7(60, Female) is the same probability except that she is NOT a hMSH2/hMLH1
mutation gene carrier.

The hMSH2 or hMLH1 gene mutation frequency Pr(M; = M) in the general popula-
tion is estimated to be 1/3139a 0.00032 with the 95% CI:[1/7626,1/1247]~ [0.00013, 0.00080] (5,
MG Dunlop et al., 2000, p.1643).

For illustration, if we take Bas(60, female) ~ 0.2751 and B;(60, female) ~ 0.0069
(from the cumulative risk curves estimated by Dunlop as shown in Figure (2.1) and (2.2)),
we will get Pr(M; = M|H) = 0.0002. Thus the evidence that a 60-year-old woman is
free of cancer has decreased the probability of carrying mutations in hMSH2 or hMLH1
gene from Pr(M; = M) = 0.00032 at birth to Pr(M; = M |H) = 0.0002.

2.1.3 Individual with Colorectal Cancer

We then calculate the probability that an individual carries a mutation at hMSH2 or
hMLH1 gene given he/she was diagnosed with colorectal cancer. Same as above, suppose
we have no information about the other family members. The probability of carrying
hMSH2/hMLH1 mutation genes for a man who is diagnosed with colorectal cancer at the
age of 35 can be estimated by using formula (2.1), where H stands for “being diagnosed
with colorectal cancer at the age of 35”. Thus we need to calculate three things:

First, the probability for a male hMSH2/hMLH1 mutation carrier to be diagnosed

with colorectal cancer at the age of 35 is:

Pr(H|M; = M) = by (35, Male)



Where H stands for “being diagnosed with colorectal cancer at the age of 357, bas(Age, Gender)
is the estimated age and sex specific incidence rates of colorectal cancer for mutation car-
riers, and bg;(Age, Gender) is the same incidence rates for non-mutation carriers. These
curves are shown in Figure (2.1) and (2.2) - B, D.

It can be easily inferred that bas(Age, Gender) is the increase in the cumulative
proportion of mutation carriers being diagnosed with cancer by the given age, namely, the
derivative of Byr(Age, Gender); And by(Age, Gender) is the increase in the cumulative
proportion of non-mutation carriers being diagnosed with cancer by the given age, namely,
the derivative of By;(Age, Gender).

Second, the probability for a male non-mutation carrier to be diagnosed with colorec-

tal cancer at the age of 35 is:

Pr(H|M; = M) = by7(35, Male)

Where b37(35, Male) is the probability for a male non-mutation carrier to be diagnosed
with colorectal cancer at the age of 35.

Third, by using formula (2.1) we will get:

Pr(M; = M|H)
_ Pr(H|M; = M)« Pr(M; = M)
N Pr(H)

Pr(H|M; = M)  Pr(M; = M)
Pr(H|M; = M)  Pr(M; = M) + Pr(H|M; = M) + Pr(M; = M)
Pr(H|M;=M)
Pr(H|M;=M)
Pr(H|M;=M) + 1-Pr(M;=M)
Pr(H|M;=M) Pr(M;=M)
bas(35,Male)
by7(35,Male)
bas(35,Male) 1—-Pr(M;=M)
b7 (35, Male) T~ Pr(M=M)

Putting it all together by using the cumulative risks and age and sex specific incidence
rates estimated by Dunlop (as shown in Figure (2.1) and (2.2)) gives: Pr(M; = M|H) ~

0.1151. Tt shows the evidence that this individual had colorectal cancer at a young age

10



increases the probability that he carries a mutation from Pr(M; = M) = 0.00032 by

about 360 folds.

11



Chapter 3

Mendelian Genetics

Think of M; = M meaning that a dominant damaged gene (G) can appear on one or
another chromosome and this damaged gene appears in the population with frequency
f. The population mutation gene carrier frequency Pr(M; = M) has been estimated to
be 0.00032(95%CI: [0.00013,0.0008]) (5, MG Dunlop et al., 2000, p.1643) in the general
population, but it may vary, depending on racial or ethnic group. The corresponding
estimate of allelic frequency f will be 0.00016 with a 95%CI: [0.000066,0.0004]. Table

3.1 shows the frequencies for the 4 possible gene pairs:

G g
G f? f-f)
g | fA-F) (1-f)?

Table 3.1: Gene Frequency

Thus:

Pr(M;=M) = Pr(G;=“Gg’)+ Pr(G; = “G&)
= 2f(1-f)+ f*

where G; represents the gene type of member 1.

12



Gpa(i) G’ Pr(Gl|Gpa(z))
“GQ” 1
“GG,GG” | “Gg” 0
“‘eg” 0
“GG” 0.5
“GG,Gg” | “Gg” 0.5
“‘eg” 0
“GQ” 0
“GG,gg” | “Gg” 1
“‘eg” 0
“GQ” 0.25
“Gg,Gg” | “Gg” 0.5
“gg” 0.25
“GG” 0
“Gg,gg” “Gg” 0.5
“gg” 0.5
“GQ” 0
“eg,gg” | “Gg” 0
“gg” 1

Table 3.2: The probability for ¢ to get his/her gene type given his/her parents’ gene types

Let pa(i) represent the parents of i; G pa(i) Tepresent the gene types of parents of 1.
The probability for 7 to get their gene type given their parents’ gene types are calculated
in Table (3.2).

Let M; represent the gene status of member ¢ in the family (M; = M indicates that i
is a mutation carrier, M; = M indicates that i is a noncarrier), Mo(i) be the indicator of
the mother of member 4, and Fa(7) be the indicator of the father of member 7. Repeatedly

applying Bayes theorem and Mendelian principles, gives the following results:
2.1.1 Pr(M; = M| M) = M) = 1=

=M - _ 1=2f4f7
2.1.2 Pr(M; = M|Mp,;) = M) = t

2.1.4 Pr(M; = M|Mp,i=M)=1-f

2.1.5 PT(MFa(i) = M|Mz = M) — %

13



2.1.6 Pr(Mp, ) = M|M; = M) = =240

2.1.7 Pr(Mp, = M|M; = M) = f

2.1.8 PT(MFa(i) = MlMl = H) e 1 — f

2.1.9 PT(MFa(i) = .2\4—7 .LMMO l MlM M) =

2.1.10 Pr(Mpaq) = M, Masoq) = M|M; = M) =
2.1.11 Pr(Mpagi) = M, Marosy = M|M; = M) =
2.1.12 Pr(Mpyi) = M, M0 = M|M; = M) =
2.1.13 Pr(Mpaq) = M, Masoq) = M|M; = M) =
2.1.14 Pr(Mpaq) = M, Masoq) = M|M; = M) =
2.1.15 Pr(Mpa(i) = M, Maroy = M|M; = M) =

2.1.16 Pr(Mpa(i) = M, Marosy = M|M; = M) =

2.1.17 Pr(M; = M|Mpai) = M, Mo = M)
2.1.18 Pr(M; = M|Mpa;) = M, Moy = M)

2.1.19 Pr(M; = M|Mpqi) = M, Marogsy) = M)

3f-2f%
T2

f2
fA=17)
f=1)

(1-1)*

2.1.20 Pr(M; = M|Mp,u) = M, Moy = M) =0

14



For illustration, here is an example of the mathematical reasoning of formula 2.1.1:

Pr(M; = M|Mpy;) = M)
Pr(M; = M, My, = M)
Pr(Mpas = M

Pr(M; = M, Gra) = “GG”) + Pr(M; = M, Gy = “Gg”)

= Pr(Gra) = “GG”) + Pr(Grag = “Gg")
Pr(M; = M|Gpagi) = “GG”) % Pr(Gpag = “GG”)
Pr(Grau) = “GG”) + Pr(Grauy = “Gg”)
Pr(M; = M|Gra) = “Gg”) * Pr(Gra) = “Gy”)
Pr(Grai) = “GG”) + Pr(Grau) = “Gg”)
L f24 3(1+ f)«2f(1 - f)
fAH2f(1-f)
1+f-f
2—-7

where Pr(M; = M|Grqi) = “GG”) = 1, Pr(GFrqai) = “GG”) = 2, Pr(M; = M|GFaiy =
“Gg”) = % + % ¥ fy and Pr(Gpqq) = “Gg”) = 2f(1 — f). Other formulas listed above
are calculated in the similar way. These formulas are implemented in the following algo-
rithms.

Pr(M;|M;, T;) represent the probability for individual j to have mutation status M;
given that the mutation status M; of individual 7 is known. Thus Pr(AM;|M;,T;) can
be calculated by using Mendelian principles if we know the pedigree for that family.
The algorithms for calculating Pr(M;|M;,T;) described in this essay are based on the

assumption that any couples in the family do not have common ancestors.

Algorithm1 Probl(j, M;, i, M;): Calculating the probability for member j to have muta-

tion status M; (M; = M or M; = M) given member i’s mutation status M; (M; = M if
member i is a mutation carrier or M; = M if member i is a non-mutation carrier) and

family pedigree.

The relationship between 1 and j can be one of the following three situations:
1. parental:

formula 2.1.1 to 2.1.8 can be used according to the mutation statuses of M; and

15



M;;
2. one is the lineal ancestor of the other, but is not a parent:
let the one with later generation be denoted by I,
let the one with earlier generation be denoted by e;

find the parent of I who is also the lineal offspring of €, and denote this individual
by k. Then:

Probl(j, M;,t,M;) = Probl(j,M;, k,M)x* Probl(k,M,i, M;)

+ Probl(j, M, k, M) * Probl(k, M, i, M;)

where M stands for the mutation status of being a carrier, and M stands for the
mutation status of being a noncarrier.

The mathematical reasoning is shown as follows:

Pr(M;[M;)
= PT(Mj,Mk:MlMi)+PT(Mj,Mk:M|Mi)
= P?“(Mj|Mk = ]\/f7 M,) * PT(Mk = M|Ml) + PT’(Mlek = M, Ml) * P?“(Mk = H|Ml)

= Pr(M;|My = M) Pr(My = M|M;) + Pr(M;|My = M) x Pr(My = M|M;)

since k is the one inbetween, M; is conditionally independent of M; given My, that is:
Pr(M;| My, M;) = Pr(M;|My).
3. relationship other than 1 and 2:

find all the lineal ancestors of 7 who are also the lineal ancestors of i,we call them
common ancestors set of 1 and j;

In common ancestors set find those who are most recent in time; there can be three
situations:

(1) cannot find any common ancestor of i and j; This means that the mutation

status of j is independent of i’s mutation status.(e.q. in family history Hy shown in

16



Chapter 1, can not find any common ancestors of member 5 and 3.) Thus:

2% f— f2 i M; =M,
Probl(j, Mj, i, M;) = T
(1-f)? if M; =171
since M is independent of M;: Pr(M;|M;) = Pr(M;).

(2) can only find one common ancestor of i and j, be denoted by k; Then:

Probl(j, M;,t,M;) = Probl(j,M;, k,M)x* Probl(k,M,i, M;)

+ Probl(j, M;,k, M) x Probl(k, M, i, M;)

The family pedigree tree shown below gives a simple example: Member 2 married twice.
Member 4 is the half-sister of member 5, thus they only have one most recent common

ancestor — member 2.

\ \ \ \ \ \
or @ b
100+ E

1eor i

250 E
3001 @ @ i

350 7

I I I I I I
100 200 300 400 500 600

Figure 3.1: Example of one most recent common ancestor
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The mathematical reasoning is shown as follows:

Pr(M;|M;)
= Pr(M;, My = M|M;) + Pr(M;, My = M|M;)
= Pr(M;|My = M, M;) x Pr(My = M|M;)

+ Pr(M;| My, = M, M;) « Pr(M;, = M|M;)

= PT‘(Mj|Mk = M) * PT(Mk = M|Ml) + PT‘(Mj|Mk = M) * PT‘(Mk = Mle)

since k is the one inbetween, M is conditionally independent of M; given My: Pr(M;| My, M;) =
Pr(M;|My).
(8) can find one couple who are common ancestors of i and j, be denoted by

k1 and kq; Then:

Probl(j, M;, i, M;)

= Prob2(j, Mj, ki, M, ko, M) % Prob3(kq, M, ka2, M, i, M,)
+ Prob2(j, M, k1, M, ka, M) * Prob3(ky, M, ko, M, i, M;)
+ Prob2(j, Mj, k1, M, ko, M) * Prob3(ky, M, kq, M, i, M;)

+ Prob2(j, M, ki, M, ky, M)  Prob3(ky, M, ka, M, i, M)
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The mathematical reasoning is shown as follows:

Pr(M;|M;)
= Pr(M;, My, = M, My, = M|M;)
+ Pr(Mj, My, = M, My, = M|M;)
+ Pr(M;, My, = M, My, = M|M;)
+ Pr(M;, My, = M, My, = M|M;)
= Pr(M;|My, = M, My, = M, M;) x Pr(My, = M, My, = M|M;)
+ Pr(M;|My, = M, My, = M, M;) x Pr(My, = M, My, = M|M,)
+ Pr(M;|My, = M, My, = M, M;) x Pr(My, = M, My, = M|M;)
+ Pr(M;|My, = M, My, = M, M;) * Pr(My, = M, My, = M|M;)
= Pr(M;|My, = M, My, = M) % Pr(My, = M, My, = M|M;)
+ Pr(M;|My, = M, My, = M) * Pr(My, = M, My, = M|M,)
+ Pr(M;|My, = M, My, = M) x Pr(My, = M, My, = M|M,)

+ Pr(M;|My, = M, My, = M) x Pr(My, = M, My, = M|M,)

since Pr(M;|My, , My,, M;) = Pr(M;|My, , My,).

Algorithm2 Prob2(j, M;, k1, My, , ko, My,): Calculating the probability for member j to

have mutation status M; (M; = M or M; = M) given k1 and ko ’s mutation statuses as

well as family pedigree.

Since k1 and ky are couple and are the lineal ancestors of j, the relationship between j
and ki,ky may have the following two situations:
1. parental: (k1 and ky are j’s parents)
formula 2.1.17 to 2.1.20 can be used according to the mutation statuses of My, ,My,
and M;;

2. k1 and ky are the lineal ancestors of 7, but not parents:
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find the parent of 7 who is also the lineal offspring of k1 and ks, be denoted by m.
Then:

PT’ObQ(j, ]\4—]7 kl, Mk1 s kz, Mk2)
= Probl(j, M;,m, M)« Prob2(m, M, ky, My, , ks, My,)

+ Probl(j, Mj,m, M) x Prob2(m, M, ky, My, , ko, My,)

The mathematical reasoning is shown as follows:

Pr(M;| My, , My,)
= Pr(M;, M,, = M|My, , My,) + Pr(M;, M,,, = M| My, , My,)
= Pr(M;|M,, = M, My, , My,) x Pr(M,, = M| My, , My,)

+ Pr(M;|M,, = M, My,, My,) * Pr(M,, = M|My, , My,)
= Pr(M;|M,, = M) x Pr(M,, = M|My, , My,)

+ Pr(M;|M,, = M) x Pr(M,, = M|My,, My,)

since Mj is conditionally independent of My, and My, given M,,: Pr(M;|M,,, My, , My,) =
Pr(M;|M,,).

Algorithm3 Prob3(k1, My, , ko, My,, t, M;): Calculating the probability for member ki to

have mutation status My, , member kg to have mutation status My, given member i’s

mutation status and family pedigree.

Since k1 and ko are couple and are the lineal ancestors of i, the relationship between @
and ki,ky may have the following two situations:
1. parental: (k1 and ky are i’s parents)
formula 2.1.9 to 2.1.16 can be used according to the mutation statuses of My, ,My,
and M;;

2. k1 and ky are the lineal ancestors of v, but not parents:
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find the parent of 1 who is also the lineal offspring of k1 and ko, be denoted by m.
Then:

P?“Ob?)(kl, Mk1 s k’z, Mk2,i, M,)
= Prob3(ky, My, , k3, My,, m, M) x Probl(m, M, i, M,)

+ Prob3(ky, My, , kg, My,, m, M) * Probl(m, M, i, M)

The mathematical reasoning is shown as follows:

Pr(My, , My, | M;)
= Pr(My,, My,, M,, = M|M;) + Pr(My, , My,, M,,, = M|M;)
= Pr(My,, My,|M,, = M, M;) * Pr(M,, = M|M;)

+ Pr(My, , My,|M,, = M, M;) + Pr(M,, = M|M,)
= Pr(My,, My,|M,, = M) x Pr(M,, = M|M,)

+ P?“(Mkl , Mk2|Mm = H) * PT‘(Mm = Mle)

since My, and My, are conditionally independent of M; given My,: Pr(My, , My, | My, M;) =
Pr(My, , My, | My).
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Chapter 4

Application to Two Artificial

Family Histories

4.1 Two Artificial Family Histories

Consider two family histories Hy (as shown in Figure (1.1) in Chapter 1) and H; (as
shown in Figure (4.1)). Calculation in this part will extend to family members other
than the individual of interest. The conditional probability for member i (i =1,...,n. n
is the family size) to be a mutation gene carrier given his/her cancer status, age, gender,
other family member’s cancer statuses, ages and genders, as well as the family relations

is of interest:

Pr(M; = M|C;, A;, S;, fo (i), fa(i), fs(i), T5) (4.1)

where M;, C;, A;, S;, fo (i), fa(i), fs(2),T; are defined as the following.
For a particular family, let M; represent the mutation status of individual 7. There
are two possible values for M;:
M if individual ¢ has mutation genes in hMSH2/hMLH]1,

M,; =
M if individual 7 does not have mutation genes in hMSH2/hMLH1.

22



100

200

300

400

500

600

700

Figure 4.1: Artificial Family History 2 (Hz), almost same

agesl

aged(

agell

38
aged2

agets

100

200 300

400

23

500

600

700 800 900

as H; but switches 9 and 11.



Let S; represent the gender of individual ¢, thus:

M if individual 7 is male,

F if individual ¢ is female.

Let A; represent age associated with individual ¢. A; could be: (1) age of diagnosed
with cancer if individual ¢ has been diagnosed with colorectal cancer at a certain age, or
(2) current age if individual 7 is alive and is free of colorectal cancer, or (3) age of death
if individual 7 is dead and was free of colorectal cancer all their life.

Let T; represent the pedigree tree for individual ¢. This is simply the structure of the
family tree. For all the family members in a particular family, they all have the same
pedigree tree for the whole family. That is for any two members ¢ and j in the same
family, T; = T;.

Let f4(¢) denote the ages associated with each family member excluding member i.

Similarly, fs(i) denote the genders associated with each family member excluding
member 7.

Let C; represent the target cancer status of individual 7 in the family; C; can take
values:

C if individual 7 has been diagnosed with a target cancer (e.g. colorectal cancer),

C; =

C if individual 7 is cancer free by current age or by the age of death.

Let fc(i) denote the known cancer statuses associated with each family member
excluding member 2.

For the moment, we will take C; to indicate whether individual ¢ has been diagnosed
with colorectal cancer or not. In the data set which will be considered later in the
essay, C; = C could be the combination of the following 4 situations: (1) diagnosed
with colorectal cancer; (2) HNPCC Tumour has been found; (3) Other Tumour has been
found; (4) Other cancer has been diagnosed.

Let O; represent any other information of individual ¢, this might contains other can-
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cer statuses (e.g. endometrial cancer, small bowel cancer, urinary tract cancer, stomach
cancer and ovaries cancer), smoking history, alcohol drinking history, dietary intake, etc.

Let fo(i) represent any other information associated with each family member ex-
cluding member 1.

Since the data set used later in this essay don’t have the information as stated in O;,
O; and fo(i) will not be considered in this model. As more information be abtained,
an extended model could be considered by incorporating family history of other cancers
which are highly predictive of the presence of hMSH2/hMLH1 mutation genes.

The probability for member 7 to be a hMSH2/hMLH1 mutation gene carrier given
his/her age, gender, other family members’ ages and genders, as well as the family rela-

tions is written as:

Pr(M; = M1A;, Si, fa(2), fs(2), Ti) (4.2)

If for any other individual j in the family (j # ¢ where ¢ is the individual we are
interested in), A;, S;, C; any one of them is missing, although j will still appear in
the family pedigree tree, their cancer statuses will not contribute in calculating the
conditional probability for individual ¢ to be a mutation carrier given family history.

We begin by applying Bayes’ theorem to express equation (4.1) in terms of other

probabilities for which we are able to model:

Pr(M; = MI1C;, A;, S, fo (i), fali), fs(2), T;)
PT(M'_MCiny( )lAuSuf (2)7](5(") )
PT‘(C,,f(j( )|A27St7fA( ) f5(2)7 l)
Pr(C;, fc(?)|M; = M, A;, S;, fa(?), fs(i), T;) x Pr(M; = M|A;, Si, fa(?), fs(i),Ty)
Pr(Cy, fo ()| Ai, Sis fa(i), fs(2), T5)
(Cqu( )| Mi = M, Aq, Si, fa(1), fs(i), Ti) » (4.2)

- Pr(C Jo A5 Si 1), 75(0),T) 9
where the left part of the numerator of equation (4.3):
Pr(Ci, fo(1) IM; = M, A;, Si, fa(i), fs(2), Ti) (4.4)
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is the joint probability of cancer statuses of all family members given that member ¢
is a mutation gene carrier, ages and genders of all the family members and the family

relations. Similarly,

Pr(C;, fo(i)) IM; = M, A;, Si, fa(i), fs(2),T5) (4.5)

is the joint probability of cancer statuses of all family members given that member 7 is
NOT a mutation gene carrier, ages and genders of all the family members and the family
relations. (4.2) in the mathematical reasoning denotes the expression in equation (4.2).
Same rule applies in this essay.

The denominator of equation (4.3) is the joint probability of cancer statuses of all
family members given member ¢’s age, gender, other family members’ ages and genders,
as well as the family relations. It can be expressed in terms of equation (4.4),(4.5) and

(4.2), namely:

Pr(Ci, fo(i) 1 Ai, S, Fa(D), fs(i), T})
= Pr(C;, fo(i), Mi = M|A;, Si, fa(2), fs(i), Ti)
+ Pr(Cy, fo(i), M; = M|A;, Si, f4(i), fs(i), T})
= Pr(Ci, fo(i)IM; = M, A;, Si, £a(i), fs(2), T))
« Pr(M; = M1A;, S;, fa(i), fs(i), T;)
+ Pr(Cy, fo(i) | M; = M, Ai, Si, fa(i), fs(i), T})
« Pr(M; = M1 A;, Si, fa(i), fs(i), T;)

= (4.4) % (4.2) + (4.5) % (1 — (4.2)) (4.6)

Combining (4.3), (4.4), (4.5) and (4.6) gives:

Pr(M; = MIC;, A;, Si, fo(i), fa(i), fs(i), Ty)
(4.4) * (4.2)
(@4) * (4.2) + (4.5) % [1 = (4.2)]
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So the three probabilities we actually need are (4.4), (4.5) and (4.2). Since (4.4) and

(4.5) are similar in how we approach them, let’s look at (4.2) first.

In the model, the assumption has been made that other family members’ relations,

ages and genders provide no information on the probability that member ¢ being a mu-

tation carrier. Available estimates of hMSH2 and hMLH1 mutation frequency in the

general population can be used to estimate the probability for an individual to be a mu-

tation carrier when absent the gene status of the other family members. Thus (4.2) can

be calculated by:

Pr(M; = M1A;, S, fa(i), fs(i), Ty)
= Pr(M;=M)

= 2f-f?

And so, from (4.7) we know that (4.1) can be rewritten as:

Pr(M; = M|C;, A;, S;, fo (i), fa(i), fs(i), T})

(4.4) % (4.2)
(42)+ (4.5)+[1 - (4.2)]
4)

(4.4)

Pr(M;=M
LR + rEMi:Mg

Where the likelihood ratio, LR, is:

LR

(4.4

4.5

~—~
~—

)
C;, fo(i)|M; = M, A;, S, fa(i), fs(2), T;)

Pr(
Pr(
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Pr(M;=M
and PrEMi:Mg

know that Pr(M; = M) =2f — f?,so Pr(M; = M) =1— Pr(M; = M) = (1 - f)%. By

is the unconditional odds against being a carrier. From equation (3.1) we

using the population mutation gene allelic frequency estimate of 0.00016 (5, MG Dunlop
et al., 2000, p.1643), we can calculate the unconditional odds against being a carrier to
be %ﬁigg = (1 —0.00032)/0.00032 ~ 3124. The conditional probability of being a

carrier is then:

LR

The information in a family history enters through the LR, which compares the proba-
bility of the individual ¢’s actual family history assuming member ¢ is a mutation carrier
with the probability of ¢’s family history assuming that member ¢ is a non-mutation
carrier. From (4.9) we can see that Pr(M; = M|H) is a monotonic function which
increases as LR increases (LR takes the value from 0 to infinity). LR = 1 is the
break-even point at which family history is noninformative as regards M. Or, in other
words, the cancer status of entire family is not informed by mutation status of 7. Thus,
Pr(M; = M|H) = Pr(M; = M) ~ 0.00032 when LR = 1.

In order to calculate LR, we need to find out (4.4) and (4.5). The numerator of
the likelihood ratio, Pr(C;, fc(?)|M; = M, A, Si, fa(i), fs(i),T;), is the probability for
observing the current family cancer history given the rest of the family information and
that member ¢ is indeed a mutation carrier.

According to Professor Oldford’s conversation with Dr. Roger Green and Dr. Ban
Younghusband (1), the assumption that the occurrences of colorectal cancer in a family
are conditionally independent given the family members’ genetic statuses, is reasonable.
So when we assume that certain family members carry mutations while others do not,
we can multiply the corresponding probabilities of these observations. Without condi-
tioning on the family members’ genetic statuses, occurrences of colorectal cancer are not
independent. Observing colorectal cancer in one family member makes it more likely to
observe colorectal cancer in another member.

By the conditional independence assumption of the occurrences of colorectal cancer
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in a family given the family members’ genetic statuses, (4.4) can be rewritten as the

following:

Pr(C;, fo(i)|M; = M, A;, S;, fa(i), fs(i), T;)

= Pr(Ci|M; = M, A;, S;, fa(?), fs(2), T;) H Pr(C;|M; = M, A;, S;, fa(i), fs(i), T;)

=1,

= Pr(CilM; =M, A;,S) [ Qu;

=1

Where

Qum;
= Pr(C;|M; = M, A;, S, fa(i), fs(i), T3)
= Pr(Cj|M; = M, A;, S;, fa(5), fs(4), o)
= Pr(Cj,M; = M|M; = M, A;,S;, fa(5), fs(), Tv)

+ Pr(Cj,Mj = M|M; = M, A}, S, fa(5), fs(5), T0)
= Pr(C|M; =M, M; = M, A;,S;, fa(j), fs(3), To)

* Pr(M; = M|M; = M, A;, Sj, fa(4), fs(4), Ts)
+ Pr(CjIM; = M, M; = M, 4;, S, fa(y), fs(j), T)
« Pr(M; = M|M; = M, A;, S;, fa(4), fs(5), Ts)

= Pr(Cj|M; = M, A}, S;) + Pr(M; = M|M; = M,T})

+ PT(C]‘|M]‘ = H,AJ‘,S]‘) * PT(M]‘ = Mle = .7\4,T,')7 fO?“j =1,2,...,n,7 752
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and

by (A, S if C;=diagnosed with cancer,
Pr(Cj|M; = M, A;, 5j) = W5 e

1 - Bum(A;, S;) if Cj=cancer free.

_ b=7(A;, S; if C;j=diagnosed with cancer,
Pr(Cj|M; = M, A;,5;) = w5 e

1 — By;(4;,5;) if Cj=cancer free.

Pr(M;|M;,T;) can be calculated by using Mendelian principles if we know the pedigree

for that family. The algorithms for calculating Pr(AM;|M;, T;) are shown in Chapter 3.
Similarly, the denominator of the likelihood ratio, Pr(C;, fo(1)|M; = M, A;, S;i, fa(i), fs(i), T;)

can also be rewritten as the following by the conditional independence assumption of the

occurrences of colorectal cancer in a family given the family members’ genetic statuses.

Pr(C;, fe())|M; = M, A;, S, fa(i), fs(9),T))

= Pr(C;|M; = M, A;, Si, fa(i), fs(i), Ty) H Pr(Cj|M; = M, A;, Si, fa(9), fs(1),T;)

=14

= Pr(C’i|Mi:H,Ai7Si) H QM]‘

=1,
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Where

Qm7;
= Pr(Cj|M; =M, A;, S;, fa(i), fs(i), T)
= Pr(Cj|M; =M, A;,S;, fa(3), fs(3), Ti)
= Pr(Cj,Mj= M|M; = M, A;,S;, fa(5), fs(j), T)

+ Pr(Cj, M; = M|M; = M, A}, S;, fa(j), fs(5), T0)
= Pr(Cj|M; = M,M; = M, A;, S}, fa(y), fs(4), T0)

* Pr(M; = M|M; = M, A;,S;, fa(5), fs(5), Ty)
+ Pr(CjIM; = M, M; = M, A;, S}, fa(3), fs(5), T0)
« Pr(M; = M|M; = M, A;, S}, fa(3), fs(4), T)

= Pr(C,|M; = M, A}, S;) « Pr(M,; = M|M; = M,T;)

+ Pr(C;|M; = M, A;,S;)  Pr(M; = M|M; = M, T;), forj=1,2,...,n,j#1

For each member in the family, whether he/she develops with cancer by a certain
age is independent of other members cancer status given his/her mutation status. Thus,
by breaking into little pieces, equation (4.4) and (4.5) can be easily calculated, and
Pr(M; = M|H;) could be obtained then.

The probability of member ¢ to carry mutation genes given family history H; or Hy
can be calculated in the similar way. The results by using the cumulative risks and age
and sex specific incidence rates estimated by Dunlop (as shown in Figure (2.1) and (2.2),
Chapter 2) are shown in table 4.1.

The population mutation carrier proportion estimate Pr(M; = M) = 0.00032 (5,
MG Dunlop et al., 2000, p.1643) is used. The conditional probability that member 1
is a mutation carrier given all the information of her families members is of interest.
Mendelian principles of inheritance have to be applied in this case. Both H; and H,

provide convincing evidence that member 3 and 4 are carriers. In Hy, the cancers observed
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PID | Pr(M; = M|H,) | Pr(M; = M[H,)
1 0.179188 0.189890
2 0.432829 0.470590
3 0.958853 0.964468
4 0.864203 0.881131
5 0.000206 0.000206
6 0.961001 0.652312
7 0.002532 0.045534
8 0.002118 0.038353
9 0.981401 0.095214
10 0.087311 0.087311
11 0.001262 0.663080
12 0.003461 0.003461

Table 4.1: Conditional Probabilities of having a mutation in hMSH2/hMLH1 gene for
members of families 1 and 2, f = 0.00016, using the cumulative risks and age-specific
incidence rates estimated by Dunlop

in member 3 and 4 strongly support the hypothesis that their mother (member 6) carries
a mutation, and member 9 provides a likely source for the mutation of genes in his
daughter (member 6). The information in Hj supports the hypothesis that at least one
of the couples (member 6 or 7) carries mutation in hMSH2/hMLH1 genes. The father
(member 7) is a likely source of a mutation in Hy but not in Hy. The second possible
source in Hj increases the probability that member 3 and 4 carry mutation genes. The
conditional probabilities for member 9 or 11 to be a mutation carrier in family history 1
is quite different from those in family history 2 due to their cancer status and age being

switched.

4.2 Uncertainty Concerning Prevalence of Mutations

The calculation of LR involves f, and the calculations in table (4.1) are based on
estimate of population mutation frequency f = 0.00016. The corresponding estimate of
prevalence is about 0.00032 which has the 95% CI: [0.00013,0.0008] (5, MG Dunlop et
al., 2000, p.1643). So the corresponding 95% CI for the population mutation frequency

f would be: [0.000066,0.0004]. The unconditional probability of carrying a mutation is
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PID Pr(M; = M|H;) Pr(M; = M|H,)
7 = 0.000066 | f = 0.0004 | f = 0.000066 | f = 0.0004
1 0.083329 0.347628 0.088026 0.363931
2 0.240889 0.651485 0.269871 0.685278
3 0.906286 0.082868 0.018463 0.985257
4 0.725372 0.039988 0.754693 0.048038
5 0.000085 0.000516 0.000085 0.000516
6 0.910884 0.083803 0.437178 0.822905
7 0.001050 0.006247 0.019405 0.105219
8 0.000880 0.005208 0.016299 0.089192
9 0.956362 0.092345 0.041877 0.205433
10 0.038214 0.190306 0.038214 0.190306
11 0.000524 0.003107 0.449356 0.829228
12 0.001438 0.008495 0.001438 0.008495

Table 4.2: Conditional Probabilities of having a mutation in hMSH2/hMLH1 gene for
members of families 1 and 2, f = 0.000066 or f = 0.0004, use the cumulative risks and
age-specific incidence rates estimated by Dunlop

Pr(M; = M) = 2f — 2%, it increases approximately proportionally to f when f is small.
Suppose the conditional probabilty for member i to be a mutation carrier given his/her
family history Pr(M; = M|H) is close to 0 for a particular f. Then an increase in f will
result in an increase in Pr(M; = M|H) by approximately the same proportion. But if
Pr(M; = M|H) is large, then changing f has little impact on the conditional probability.
Consider values of f at the upper and lower 95% confidence interval values, the effect on
the conditional probabilty Pr(M; = M|H) is shown in table 4.2 (use cumulative risks
and age and sex specific incidence rates estimated by Dunlop as shown in Figure (2.1)

and (2.2), Chapter 2).
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Chapter 5

Application to One Actual Family

History

This chapter gives the application on a real family history which comes from the data
supplied by Dr. Roger Green and Dr. Ban Younghusband. The real family history Hs
is shown in Figure (5.1).

Data came with four different cancer categories: (1) diagnosed with colorectal cancer;
(2) HNPCC Tumour has been found; (3) Other Tumour has been found; (4) Other cancer
has been diagnosed. Strictly speaking, only situation (1) should be considered. But for
most of the families in the dataset, only a few people belong to situation (1) — diagnosed
with colorectal cancer. Thus the conditional probability calculated would be almost the
same as the general population carrier estimate Pr(AM; = M) & 0.00032 for most of the
people in the dataset. Here all four were grouped together so that occurrence of any one
of the four for person ¢ is treated as C; = C.

As can be seen from the figure, there are nine members in the family who have C; = C.
Four of them lack the information of age at diagnosis as well as their current age, thus
they do not contribute in calculating the conditional probability that a particular member
carries mutation genes given their family history.

The results for Hz by using the cumulative risks and age and sex specific incidence
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Figure 5.1: An Actual Family History 3 (Hs).
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rates estimated by Dunlop (as shown in Figure (2.1) and (2.2), Chapter 2) are shown in
Table (5.1).

As what appears in Table (5.1), member 19, 27, and 29 have larger probability of
being a mutation carrier compared with the other members in the family since they
were all diagnosed with colorectal cancer. Among them, member 29 has the largest
probability of carrying mutation genes since he was diagnosed with colorectal cancer at a
young age. Although member 1 was also diagnosed with colorectal cancer at almost the
same age as member 29, the fact that all his children are free of cancer greatly decreases
his probability of being a mutation carrier. Similarly, the fact that all the children of
member 4 are free of cancer decreases the probability for member 4 to be a mutation
carrier from 0.00032 at birth to 0.000119.

Member 36 is the only one in the family whose information will influence the con-
ditional probability of member 35, and the fact that member 36 is free of colorectal by
the age of 11 supplies very weak evidence that member 35 could be a mutation carrier.
Thus the probability for member 35 to be a mutation carrier is approximately equal to
the estimate of general population mutation frequency.

For member 28 and 36, the probability that they are mutation carriers respectively is
of particular interest since the siblings of member 28 were all diagnosed as C; = C, and
there is strong evidence to support the hypothesis that member 36’s father — member 19,
is a mutation carrier. The probability calculated in the table is 0.1641 for member 28
and 0.0586 for member 36. Depending on available medical resources these probabilities

may be large enough to warrant further investigation on them.
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PID Pr(M; = M[H,)
7 =0.00016 | 95%CI=[0.000066, 0.0004]
1 | 0.034446 [0.014571, 0.080977]
2 | 0.013794 [0.005765, 0.033383]
3 | 0.037099 [0.015719, 0.086867]
4 | 0.000119 [0.000049, 0.000298]
5 | 0.005119 [0.002127, 0.012548]
6 | 0.004119 [0.001771, 0.010111]
7 | 0.005088 [0.002115, 0.012473]
8 | 0.005088 [0.002115, 0.012473]
9 | 0.004411 [0.001833, 0.010824]
10 | 0.004554 [0.001893, 0.011174]
11 | 0.005018 [0.002086, 0.012303]
12 | 0.004950 [0.002058, 0.012140]
13 | 0.009679 [0.004036, 0.023559]
14 | 0.020293 [0.008514, 0.048645]
15 | 0.189726 [0.088365, 0.367133]
16 | 0.020293 [0.008514, 0.048645]
17 | 0.020293 [0.008514, 0.048645]
18 | 0.093338 [0.040866, 0.203307]
19 | 0.742106 [0.543319, 0.877332]
20 | 0.006770 [0.002817, 0.016555]
21 | 0.006770 [0.002817, 0.016555]
22 | 0.006769 [0.002817, 0.016552]
23 | 0.000320 [0.000132, 0.000800]
24 | 0.002338 [0.000969, 0.005768]
27 | 0.895336 [0.779634, 0.955045]
28 | 0.164111 [0.075182, 0.327108]
29 | 0.618593 [0.401541, 0.800992]
30 | 0.020293 [0.008514, 0.043645]
31 | 0.007157 [0.002979, 0.017490]
33 | 0.006746 [0.002807, 0.016499)]
34 | 0.006746 [0.002807, 0.016499]
35 | 0.000319 [0.000132, 0.000799]
36 | 0.058609 [0.025145, 0.133391]

Table 5.1: Conditional Probabilities of having a mutation in hMSH2/hMLH1 gene for
members of families 3, with the allelic frequency estimates to be f = 0.00016 and its 95%
CI lower and upper bound respectively (f = 0.000066 or f = 0.0004). The cumulative
risks and age-specific incidence rates estimated by Dunlop are used.
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Chapter 6

Impact of Genetic Testing

Here we consider the impact of genetic testing following that of Berry (2, D.A. Berry
et al., 1997, p.234). A person who has a family history of colorectal cancer may consider
genetic testing. Those who have been diagnosed with colorectal cancer and who have a
family history of colorectal cancer may be concerned about the possibility of developing
a second or even more cancers. Many unaffected relatives of these people who are at
increased risk of developing cancer will also worry about developing colorectal cancer.
But the potential risks such as psychological distress, restriction of life, and disability
insurance and so on, which are associated with testing, make a decision of whether to
proceed with testing difficult.

The estimate of the conditional probability for a person to carry a mutation based on
their family history will help them to make a more informed decision of whether or not to
proceed with genetic testing. There are two possible results for the test: +/—. A positive
test result predicts that the tested individual is a mutation carrier and a negative test
result predicts that the tested individual is not a mutation carrier. But the prediction
might not always be correct.

The false-positive rate is the probability that the tested individual gets a positive test
result but he/she is not a mutation carrier. Then: false-positive rate=Pr(+|M; = M).

The false-negative rate is the probability that the tested individual gets a negative test
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result while he/she is actually a mutation carrier, or false-negative rate=Pr(—|M; = M).

An important consideration in deciding whether to be tested is the test’s specificity
(the probability that the tested individual gets a negative test result given he/she is
not a mutation carrier) and sensitivity (the probability that the tested individual gets a
positive test result given he/she is a mutation carrier). We know that:

specificity= Pr(—|M; = M) = 1—false-positive rate

sensitivity= Pr(+4|M; = M) = 1—false-negative rate
For simplicity, let a=specificity and b=sensitivity. Pr(M; = M|H,+) is the probability
for individual ¢ to be a mutation carrier given their family history and he gets a positive
test result; Pr(M; = M|H, —) is the probability for individual ¢ to be a mutation carrier
given their family history and he gets a negative test result. Pr(M; = M|H) now plays
as a prior probability and the test result (4/—) is the evidence. By applying Bayes’

theorem, the carrier probability of a positive test result would be:

Pr(M; = M|H,+)
Pr(+|M; = M) « Pr(M; = M|H)
Pr(+|M; = M) « Pr(M; = M|H) + Pr(+|M; = M) « Pr(M; = M|H)
bx Pr(M; = M|H)

= — 6.1
bx Pr(M; =M|H)+ (1—a)* Pr(M; =M|H) (6.)
And the carrier probability of a negative test result would be:
Pr(M; =M|H,-)
B Pr(—|M; = M) « Pr(M; = M|H)
"~ Pr(—|M; = M)« Pr(M; = M|H) + Pr(—|M; = M) » Pr(M; = M|H)
_ (1—-0)x Pr(M;=M|H) (6.2)

(1—b) « Pr(M; = M|H) + a x Pr(M; = M|H)

As an example, consider member 1 of family 1(as shown in Figure (1.1)) and suppose
a=95% and b=85%. Her carrier probability based on her family history is: Pr(M; =

M|H,) = 0.179188 (assuming population mutation frequency to be 0.00016, as shown in
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Table (4.1)). If she is tested, the probability of getting a positive test result is:

Pr(+|H,)
= Pr(+|M; = M)« Pr(M, = M|H,) + Pr(+|M; = M) x Pr(M, = M|H;)
= b*Pr(M; = M|H,)+ (1 —a) * Pr(M, = M|H;)
= 0.85%0.179188 + 0.05 % (1 — 0.179188)

0.161

2

And the probability of a negative test is: Pr(—|H;) = 1 — Pr(+|H;) = 0.839. If her test
result was positive, the her carrier probability given her family history and test result

would be:

Pr(+|M; = M)  Pr(M; = M|H)
Pr(+|Hy)
b+ Pr(M; = M|H)
Pr(+|Hy)
0.85 % 0.179188
0.161

0.946

PT(M1:M|H17—|-) =

2

If she were to test negative, then her carrier probability given her family history and test

result would be:

Pr(—|M; = M)« Pr(M; = M|H)

PT(M1:M|H1,—) =

Pr(—|H))
_ (1=b)«Pr(M; =M|H)
- Pr(—|H,)
~0.15%0.179188
o 0.839
~ 0.032

For this woman, if she gets a positive test result, the probability for her to carry mutation

genes is much larger than that given a negative test result. In this situation, the genetic
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testing is worthwhile.

As another example, consider member 2 of family history 2 (as shown in Figure
(4.1)) and still suppose a=95% and b=85%. The carrier probability of her is Pr(M; =
M|H3) = 0.470590 (assuming allelic mutation frequency f = 0.00016, as shown in Table

(4.1)). So the probability of a positive test is:
Pr(+|Hy) = b+ Pr(My = M|Hj) + (1 — a) * Pr(M; = M|H,) = 0.426472
and the probability of a negative test is: Pr(—|H;) = 1 — Pr(+|Hz) = 0.573528. If she

get a positive test result:

N b*PT(M2:M|H2)

PT(Mz = _2\4—“.7[27 —|—) = Pr(—}—|H2) ~ 0.938.

If she get a negative test result:

(1 —b) « Pr(M, = M|Hy)

PT(M2:M|H27_): PT(—|H2)

~ 0.123.

Should this 40-year-old, disease-free woman take a genetic testing? There are a variety
of considerations. Any benefit of testing depends on the woman’s probability of being
a mutation carrier based on family history and on the sensitivity and specificity of the
testing, as well as on the effectiveness of available prophylactic interventions. The woman
might choose them if the available prophylactic interventions are deemed as highly effec-
tive even if her probability of being a mutation carrier is small. But if the test result of
genetic testing would lead her to two different interventions, then the testing might has
some value. By using this model, physicians and counselors may be able to help women

determine what probability of identifying a mutation would lead them to testing.
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Chapter 7

Limitation and Further Directions

7.1 Estimates of population carrier frequency of hMSH?2

and hMLH1 mutations

Estimates of population carrier frequency of hMSH2 and hMLH1 mutations derived em-
pirically from HNPCC families induce ascertainment bias. Such families are relatively
small in number. Not all gene carriers have a family history of the disease, and fami-
lies fulfilling the Amsterdam criteria are relatively uncommon (8, SM Farrington et al.,
1998, p.749). Hence, population prevalence of mismatch repair gene mutations cannot
be calculated from studies employing family history ascertainment (6, MG Dunlop et al.,
1997, p.105). MG Dunlop had provided an estimate of carrier frequency of mutations in
hMSH1 and hMLH?2 based on systematically collected data that is not subject to bias
due to family history ascertainment. Analysis are restricted to people aged 15-74 years,
who are all surviving relatives of Scottish probands with early-onset colorectal cancer,
and these probands with documented mutations were ascertained on the basis of being
affected by colorectal cancer when aged less than 30 years at diagnosis, irrespective of
family history. Thus ascertainment bias was minimised since these people are not from

pre-selected HNPCC families.
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7.2 Population based cancer risk estimation

Similarly, cancer risk estimates derived empirically from pre-selected known HNPCC
kindreds inevitably induce ascertainment bias. Again MG Dunlop targeted genetic anal-
ysis to patients with both early-onset colorectal cancer and an RER tumour as a means
of identifying kindreds with germline MMR gene mutations. The lifetime cancer risk
assessed in the cohort of relatives of probands, in whom ascertainment bias has been
minimised, provide a rational population-wide basis. Although the least biased of all
possible samples would involve a population screening approach regardless of disease
state, but at present this is not practical. It might not be rational to use the estimates
obtained from Scottish population on the cases from Canada since mutation frequency
may vary with ethnicity.

The probability that a person carries mutation genes at hMSH2/hMLH1 given their
family history is calculated. This person may be affected or unaffected of colorectal
cancer. This model can be used to calculate the cumulative probability of colorectal
cancer before a given age by averaging the cumulative incidence probabilities for carri-
ers and noncarriers. For example, member 1 of family history 1 is 24 years old. The
probability that she carries a mutation at hMSH2/hMLH1 is 0.179188. The probability
that she develops colorectal cancer by age 45 is: Bas(45) — Ba(24) =~ 0.337 if she is
a mutation gene carrier, and it is: By;(45) — B37(24) ~ 0.016 if she is a noncarrier.
Thus the unconditional probability that she will develop colorectal gene by age 45 is:
0.337 % 0.179188 + 0.016 * (1 — 0.179188) =~ 0.074. In addition, this model considers the
number, relationship, and ages of unaffected individuals. Having many unaffected family

members can substantially lower a carrier probability.

7.3 Other mutation genes might be influential to HNPCC

This model focuses on mutations in hMSH2 or hMLH1 and assumes that all other col-

orectal cancer is sporadic. The estimate of carrier frequency used in this essay is based
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on hMSH2 and hMLH1 mutations. Similarly the age and sex specific incidence rates
by Dunlop (6, MG Dunlop et al., 1997, p.107) is based on these same two mutation
genes. However, sometimes there are other families with a great deal of cancer history
for which there is no detectable presence of the known mutations hMSH2/hMLH1. Some
of these new influential genes have been identified. Recent data indicate that mutations
of hMSH6 account for an appreciable proportion of HNPCC-like families (7, J Wijnen
et al., 1999, p.143). Usually it is expensive to find new mutations. And it is hoped that
the same probability model will work for mutations not yet determined (depending on

the correct value of f and the applicability of the incidence curves).

7.4 Other cancer related to hMSH2/hMLH1 can be con-

sidered

The occurance of various other early-onset cancers are strong evidence of the presence
of mutation in hMSH2 or hMLH1 genes. Studies indicate that carrying a mutation in
hMSH2/hMLH1 genes will increase the risk of endometrial cancer, small bowel cancer,
urinary tract cancer, stomach cancer and ovaries cancer (4, H.F.A Vasen et al., 1996,
p.1020). To incorporate family history of these diseases might improve the estimate of a

particular member in the family carrying a mutation gene in hMSH2/hMLH1.
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Appendix

Private Function FindCommonAncestor(iPidi1, iPid2) As CommonAncestors
Dim cAncestorl As Ancestors
Dim cAncestor2 As Ancestors
Dim inFlag, i, j, jindex As Integer

With FindCommonAncestor

.Pid1 iPid1

.Pid2 = iPid2

.iNum 0

.PidList = Array()

.GenerListl = Array()

.GenerList2 = Array()

.minrl = FamilySize

.minr2 = FamilySize

cAncestorl = FindAncestor(iPidi1, 0)

cAncestor2 = FindAncestor(iPid2, 0)

For i = LBound(cAncestorl.PidList) To UBound(cAncestorl.PidList)
inFlag = 0
For j = LBound(cAncestor2.PidList) To UBound(cAncestor2.PidList)

If cAncestorl.PidList(i) = cAncestor2.PidList(j) Then

inFlag = 1

jindex

1}
(S

End If

Next j

If inFlag = 1 Then
.iNum = .iNum + 1
.PidList = Concatenate(.PidList, Array(cAncestorl.PidList(i)))

.GenerListl = Concatenate(.GenerList1,

45



Array(cAncestorl.rGeneration(i)))
.GenerList2 = Concatenate(.GenerList2,
Array(cAncestor2.rGeneration(jindex)))
If cAncestorl.rGeneration(i) < .minrl Then
.minrl = cAncestorl.rGeneration(i)
End If
If cAncestor2.rGeneration(jindex) < .minr2 Then
.minr2 = cAncestor2.rGeneration(jindex)
End If
End If
Next 1
End With

End Function

Private Function FindAncestor(iPid, Rg) As Ancestors
Dim cAnces As Ancestors
Dim fAnces As Ancestors
Dim mAnces As Ancestors
Dim i As Integer
Dim Fid, Mid As String
cAnces.iNum = O
cAnces.PidList = Array()
cAnces.rGeneration = Array()
FindAncestor = cAnces

fAnces = cAnces

mAnces = cAnces

For i = 1 To FamilySize

If ListViewl.ListItems.Item(i).SubItems(1) = iPid Then
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Fid = ListViewl.ListItems.Item(i).SubItems(2)

If Fid = O Then

fAnces.iNum =

Else

fAnces = FindAncestor(Fid, Rg + 1)

End If

Mid = ListViewl.ListItems.Item(i).SubItems(3)

If Mid = O Then

mAnces.iNum =

Else

mAnces = FindAncestor(Mid, Rg + 1)

End If

FindAncestor = MergeAnces(fAnces, mAnces)

If Fid <> 0 Then
FindAncestor.
FindAncestor.
FindAncestor.PidList)
FindAncestor.
FindAncestor.rGeneration)
End If
If Mid <> 0 Then
FindAncestor.
FindAncestor.
FindAncestor.PidList)
FindAncestor.
FindAncestor.rGeneration)
End If

End If

rGeneration

rGeneration

FindAncestor.iNum + 1

Concatenate(Array(Fid),

Concatenate(Array(Rg + 1),

FindAncestor.ilNum + 1

PidlList = Concatenate(Array(Mid),

Concatenate(Array(Rg + 1),



Next i

End Function

Private Function IsFather(Opid, fpid) As Boolean
Dim i As Integer
Dim iPid, Fid As String
IsFather = False
For i = 1 To FamilySize
iPid = ListViewl.ListItems.Item(i).SubItems(1)
Fid = ListViewl.ListItems.Item(i).SubItems(2)
If iPid = Opid Then
If Fid = fpid Then
IsFather = True
End If
End If
Next i

End Function

Private Function IsMother(Opid, mpid) As Boolean

Dim i As Integer

Dim iPid, Mid As String

IsMother = False

For i = 1 To FamilySize
iPid = ListViewl.ListItems.Item(i).SubItems(1)
Mid = ListViewl.ListItems.Item(i).SubItems(3)
If iPid = Opid Then

If Mid = mpid Then

IsMother = True
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End If
End If
Next i

End Function

Private Function IsKid(Opid, PPid) As Boolean
Dim i As Integer

Dim Fid, Mid, iPid As String

IsKid = False

For i = 1 To FamilySize
iPid = ListViewl.ListItems.Item(i).SubItems(1)
Fid = ListViewl.ListItems.Item(i).SubItems(2)

Mid = ListViewl.ListItems.Item(i).SubItems(3)

If iPid = Opid Then
If Fid = PPid Or Mid = PPid Then
IsKid = True
End If
End If
Next i

End Function

Private Function FindKids(PPid) As Ancestors
Dim i As Integer
Dim Fid, Mid, iPid As String
With FindKids
.iNum = O
.PidList = Array()

.rGeneration = Array()
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For i = 1 To FamilySize
iPid = ListViewl.ListItems.Item(i).SubItems(1)

Fid = ListViewl.ListItems.Item(i).SubItems(2)

Mid = ListViewl.ListItems.Item(i).SubItems(3)
If Fid = PPid Or Mid = PPid Then
.iNum = .iNum + 1
.PidList = Concatenate(.PidList, Array(iPid))
.rGeneration = Concatenate(.rGeneration, Array(-1))
End If
Next i

End With

End Function

Private Function FindParents(Opid) As Ancestors
Dim i As Integer
Dim iPid, Fid, Mid As String

With FindParents

. iNum 2
For i = 1 To FamilySize
iPid = ListViewl.ListItems.Item(i).SubItems(1)

Fid = ListViewl.ListItems.Item(i).SubItems(2)

Mid = ListViewl.ListItems.Item(i).SubItems(3)
If iPid = Opid Then

.PidList = Array(Fid, Mid)

.rGeneration = Array(1l, 1)
End If

Next i

End With
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End Function

Private Function IsAncestor(offspringPid, AncList As Variant) As Boolean
Dim i, j As Integer
Dim cAnces As Ancestors
Dim inFlag As Boolean
cAnces = FindAncestor(offspringPid, 0)
IsAncestor = True
For i = LBound(AncList) To UBound(AncList)
inFlag = False
For j = LBound(cAnces.PidList) To UBound(cAnces.PidList)
If AncList(i) = cAnces.PidList(j) Then
inFlag = True
End If
Next j
If inFlag = False Then
IsAncestor = False
End If
Next i

End Function

Private Function IsOffspring(AncesPid, Offsprings As Variant) As Boolean
Dim i As Integer
IsOffspring = True
For i = LBound(Offsprings) To UBound(Offsprings)
If IsAncestor(Offsprings(i), Array(AncesPid)) = False Then
IsOffspring = False

End If
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Next i

End Function

Private Function aGb(apid, aMt As String, bPid, bMt As String) As Double
Dim f, prob, rel, re2 As Double
Dim cAnces As Ancestors
Dim kAnces As Ancestors
Dim i, j, k, n As Integer
Dim kpid As String
Dim fAnces As CommonAncestors
Dim lAnces As CommonAncestors
If apid <> bPid Then
If IsKid(apid, bPid) Then > apid is the kid of bpid
aGb = KidGiPa(aMt, bMt)
ElseIf IsKid(bPid, apid) Then °’ apid is one of the parents of bpid
aGb = PalGKid(aMt, bMt)
Else > they are not filiation
prob = 0O
kAnces.iNum = O
kAnces.PidList = Array()
kAnces.rGeneration = Array()
If IsAncestor(apid, Array(bPid)) Then ’ bpid is the ancestor of apid
cAnces = FindParents(apid)
For i = LBound(cAnces.PidList) To UBound(cAnces.PidList)
> find parents of apid who are offsprings of bpid
kpid = cAnces.PidList (i)
If IsOffspring(bPid, Array(kpid)) Then

kAnces.iNum = kAnces.iNum + 1
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kAnces.PidList = Concatenate(kAnces.PidList, Array(kpid))
kAnces.rGeneration =
Concatenate(kAnces.rGeneration, Array(cAnces.rGeneration(i)))
End If
Next i
n = kAnces.iNum

Select Case n

Case 1
kpid = kAnces.PidList(0)
prob = aGb(apid, aMt, kpid, "M") * aGb(kpid, "M", bPid, bMt)

prob = prob + aGb(apid, aMt, kpid, "N")

* aGb(kpid, "N", bPid, bMt)
Case 2
For j = 0 To ((2 " n) - 1)
prob = prob +
P1G2(apid, aMt, kAnces.PidList, j)*P2G1(kAnces.PidList, j, bPid, bMt)
Next j
End Select
ElseIf IsOffspring(apid, Array(bPid)) Then
> apid is the ancestor of bpid
cAnces = FindParents(bPid)
For i = LBound(cAnces.PidList) To UBound(cAnces.PidList)
kpid = cAnces.PidList(i)
If IsOffspring(apid, Array(kpid)) Then
kAnces.iNum = kAnces.iNum + 1
kAnces.PidList = Concatenate(kAnces.PidList, Array(kpid))
kAnces.rGeneration = Concatenate(kAnces.rGeneration,

Array(cAnces.rGeneration(i)))
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End If

Next i

n = kAnces.ilNum

Select Case n

Case 1
kpid = kAnces.PidList(0)
prob = aGb(apid, aMt, kpid, "M") * aGb(kpid, "M", bPid, bMt)

prob = prob + aGb(apid, aMt, kpid, "N")

* aGb(kpid, "N", bPid, bMt)
Case 2
For j = 0 To ((2 " n) - 1)
prob = prob +
P1G2(apid, aMt, kAnces.PidList, j) * P2G1(kAnces.PidList, j, bPid, bMt)
Next j
End Select

Else

fAnces = FindCommonAncestor(apid, bPid)

lAnces FindLatestAncestor(fAnces)

cAnces = AncesTypeChange(lAnces)

Select Case cAnces.ilNum

Case O ’no relationship between apid & bpid
prob = PrMN(aMt)
Case 1
kpid = cAnces.PidList(0)
prob = aGb(apid, aMt, kpid, "M") * aGb(kpid, "M", bPid, bMt)
prob = prob +

aGb(apid, aMt, kpid, "N") * aGb(kpid, "N", bPid, bMt)

Case 2
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n = cAnces.ilNum

For j = 0 To ((2 " n) - 1)

rel = P1G2(apid, aMt, cAnces.PidlList, j)

re2 = P2G1(cAnces.PidList, j, bPid, bMt)
prob = prob + rel * re2
Next j
Case Else
MsgBox "Error in aGb!'", vbExclamation, "Error"
End Select
End If
aGb = prob
End If
Else

If aMt = bMt Then

aGb = 1
Else

aGb = 0
End If

End If

End Function

Private Function P1G2(ByVal apid, aMt As String, ByVal PidList As Variant,
ByVal idx As Integer) As Double

Dim fpid, mpid, kpidO, kpidl As String

Dim bf, bm, ba0, bal, bo0, bol As Boolean

Dim cAnces As Ancestors

Dim kAnces As Ancestors

Dim re As Double
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*

*

*

*

fpid

mpid
bf =

bm =

PidList(0)
PidList(1)
IsKid(apid, fpid)

IsKid(apid, mpid)

Select Case Abs(CInt(bf + bm))

Case O

If IsAncestor(apid, PidList) Then

cAnces =
kpidO
kpid1
bo0 =

bol =

FindParents(apid)

cAnces.PidList(0)

cAnces.PidList (1)

IsAncestor(kpid0, PidList)

IsAncestor(kpidl, PidList)

Select Case Abs(CInt(boO + bol))

Case O

’impossible

MsgBox "Error in P1G2!", vbExclamation, "Error"

P1G2 = O

Case 1

P1G2(kpido,

P1G2(kpido,

P1G2(kpid1,

P1G2(kpidt,

If boO Then
re = aGb(apid, alt,

U“M", PidList, idx)
re = re + aGb(apid,

U“N", PidList, idx)

Else

re = aGb(apid, alMt,

U“M", PidList, idx)
re = re + aGb(apid,

U"N", PidList, idx)

End If
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P1G2 = re

Case 2

re = P1G2(apid, aMt, cAnces.PidList, O)

* P1G2(kpid0, "N", cAnces.PidList, idx) *
re = re + P1G2(apid, aMt,
* P1G2(kpid0, "N", cAnces.PidList, idx) *
re = re + P1G2(apid, aMt,
* P1G2(kpid0, "M", cAnces.PidList, idx) *
re = re + P1G2(apid, aMt,
* P1G2(kpid0, "M", cAnces.PidList, idx) *
P1G2 = re
End Select

Else

MsgBox "Error

P1G2 = O

End If

Case 1

P1G2

Case 2

P1G2

End Select

End Function

KidG2Pa(aMt, idx)

P1G2(kpidl, "N", cAnces
cAnces.PidlList, 1)
P1G2(kpidl, "M", cAnces
cAnces.PidlList, 2)
P1G2(kpidl, "N", cAnces
cAnces.PidlList, 3)

P1G2(kpidl, "M", cAnces

in P1G2!'", vbExclamation, "Error"

.PidList,

.PidList,

.PidList,

.PidList,

Private Function P2G1(ByVal PidList As Variant, ByVal idx As Integer,

ByVal bPid, bMt As String) As Double

Select Cas

Case O

e idx

P2G1 = P1G2(bPid, bMt, PidList, idx)*PrMN("N")*PrMN("N")/PrMN(bMt)
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Case 1

P2G1 = P1G2(bPid, bMt, PidList, idx)*PrMN("N")*PrMN("M")/PrMN(bMt)
Case 2

P2G1 = P1G2(bPid, bMt, PidList, idx)*PrMN("M")*PrMN("N")/PrMN(bMt)
Case 3

P2G1 = P1G2(bPid, bMt, PidList, idx)*PrMN("M")*PrMN("M")/PrMN(bMt)
End Select

End Function

Private Sub FindDistinctFMember(iFam As String)
Dim strSQL As String
Dim i As Integer
strSQL = "SELECT DISTINCT PID FROM cancer WHERE FAM=" & iFam
With Adodcl
.ConnectionString = strAccessConnect
.RecordSource = strSQL
.Refresh
Set AdodcRs = .Recordset
End With
If AdodcRs.RecordCount > O Then
DistinctFamSize = AdodcRs.RecordCount
AdodcRs.MoveFirst
For i = 0 To (AdodcRs.RecordCount - 1)
FMembers (i) = AdodcRs("PID")
AdodcRs.MovelNext
Next i
’ MsgBox "There are " & DistinctFamSize & " members in the family."

Else
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DistinctFamSize = 0
MsgBox "Find record error, FAM=" & iFam
End If

End Sub

Private Function ProbMgivenH(iPid As String) As Double

Dim priorM, priorN, cancerM, cancerN As Double

priorM = PrMN("M")

priorN = PrMN("N")

cancerM = FCancer(iPid, "M")

cancerN = FCancer(iPid, "N")

ProbMgivenH = cancerM * priorM / (cancerM * priorM + cancerN * priorN)

End Function

Private Function FCancer(iPid As String, iMutStatus As String) As Double
Dim jPid As String
Dim i As Integer
FCancer = 1
For i = 0 To (DistinctFamSize - 1)
jPid = FMembers(i)
FCancer = FCancer * JCancer(jPid, iPid, iMutStatus, 0)
Next i

End Function

Private Function JCancer(jPid As String, iPid As String, iMutStatus As String,
msgFlag As Integer) As Double
Dim result, prm, prn, pagbm, pagbn As Double

Dim str As String
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Call FindInfo(jPid)
If (PersonJ.age = 0) Then
If PersonJ.DOB <> "" Then

If PersonJ.DOD <> "" Then

PersonJ.age = Left(PersonJ.DOD, 4) - Left(PersonJ.DOB, 4)

Else

PersonJ.age = Year(Date) - Left(PersonJ.DOB, 4)
End If
End If
End If
If jPid = iPid Then
If iMutStatus = "M" Then

result = Carrier(PersonJ.STAT, PersonJ.AgeDx, PersonJ.age,PersonJ.Sex)

ElseIf iMutStatus = "N" Then

result = NonCarrier(PersonJ.STAT, PersonJ.AgeDx, PersonlJ.age, PersonJ.Sex)

Else
result = 0O
End If
Else
prm = Carrier(PersonJ.STAT, PersonJ.AgeDx, PersonlJ.age, PersonJ.Sex)
prn = NonCarrier(PersonJ.STAT, PersonJ.AgeDx, PersonlJ.age, PersonJ.Sex)
pagbm = aGb(jPid, "M", iPid, iMutStatus)
pagbn = aGb(jPid, "N", iPid, iMutStatus)

result = prm * pagbm + prn * pagbn
End If
JCancer = result

If msgFlag <> 0 Then
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str = "Member " & jPid
Select Case PersonlJ.Sex

Case O

str str & ", whose gender is unknown,"

Case 1

str str & ",female,"

Case 2

str str & ",male,"
End Select
If PersonJ.STAT = 1 Then

str = str & " diagnosed of cancer at the age of "

If PersonJ.AgeDx > O Then

str = str & PersonJ.AgeDx
Else
str = str & PersonlJ.age
End If
Else
str = str & " is cancer free by the age of " & PersonlJ.age
End If

str = str & " given member " & iPid

If iMutStatus = "M" Then

str = str & " has mutation is: " & JCancer
Else

str = str & " does not have mutation is: " & JCancer
End If
MsgBox str

End If

End Function
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Private Function FX(ByVal b0 As Double, ByVal bl As Double, ByVal b2 As Double, ByVal a0

Dim tempa As Double

tempa = Exp(-al * (age - a2))
FX = 1 - (1 - GX(bO, bl, b2, age)) * (1 - a0 / (1 + tempa))

End Function

Private Function GX(ByVal bO As Double, ByVal bl As Double, ByVal b2 As Double, ByVal ag
GX = b0 / (1 + Exp(-bl * (age - b2)))

End Function

Private Function FIncidence(ByVal bO As Double, ByVal bl As Double, ByVal b2 As Double, !

Dim tempa, tempb, parta, partb As Double

tempb = Exp(-bl * (age - b2))
tempa = Exp(-al * (age - a2))
parta = b0 * bl * tempb / ((1 + tempb) ~ 2) * (1 - a0 / (1 + tempa))

partb = (1 - b0 / (1 + tempb)) #* a0 * al * tempa / ((1 + tempa) ~ 2)
FIncidence = parta + partb

End Function

Private Function GIncidence(ByVal bO As Double, ByVal bl As Double, ByVal b2 As Double, !

Dim temp As Double

temp = Exp(-bl * (AgeDx - b2))
GIncidence = b0 * bl * temp / ((1 + temp) ~ 2)

End Function
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Private Function Carrier(CStat As Integer, AgeDx As

Sex As Integer) As Double

Dim b0, b1, b2, a0, al, a2 As Double

Select Case Sex

Case 1 ’female

b0 = bOFemal

b1l = bilFemal

b2 = b2Femal

a0 = aOFemal
al = alFemal
a2 = a2Femal
Case 2 ’mal
b0 = bOMale
bl = bilMale
b2 = b2Male
a0 = aOMale
al = alMale
a2 = a2Male
End Select

If (age = 0 And
Carrier = 1
Else
Select Case
Case O
Carrier
Case 1

If AgeDx

e
e
e
e
e
e

e

AgeDx = 0) Or (Sex =

CStat

> free of cancer

’diagnosed of cancer

= 0 Then
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AgeDx = age
End If
Carrier = FIncidence(bO, b1, b2, a0, al, a2, AgeDx)
End Select
End If

End Function

Private Function NonCarrier(CStat As Integer, AgeDx As Integer,
age As Integer, Sex As Integer) As Double
Dim temp As Double
Dim b0, b1, b2, a0, al, a2 As Double
Select Case Sex
Case 1 ’female
b0 = bOFemale
bl = biFemale
b2 = b2Female
a0 = aOFemale
al = alFemale

a2 = a2Female

Case 2 ’male
b0 = bOMale
bl = blMale
b2 = b2Male
a0 = aOMale
al = alMale
a2 = a2Male

End Select

If (age = O And AgeDx = 0) Or (Sex = 0) Then
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NonCarrier 1
Else

Select Case CStat

, b2, AgeDx)

Case O > free of cancer
NonCarrier = 1 - GX(bO, b1, b2, age)
Case 1 > diagnosed of cancer
If AgeDx = O Then
AgeDx = age
End If
NonCarrier = GIncidence(bO, b1l
End Select
End If

End Function

Private Function FindInfo(jPid As String)
Dim i As Integer

With PersonlJ

.STAT = 0

.AgeDx = 0

.Fam = txtFAM.Text

.Pid = jPid

For i = 1 To FamilySize

If ListViewl.ListItems.Item(i)

.Fid = ListViewl.ListItems
.Mid = ListViewl.ListItems
.Sex = ListViewl.ListItems
Select

Case "1", "2m, n3", n4gn
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.Item(i) .SubItems(2)
.Item(i) .SubItems(3)

.Item(i) .SubItems(4)

Case ListViewl.ListItems.Item(i).SubItems(5)



.STAT = 1 ’cancer diagnosed

If ListViewl.ListItems.Item(i).SubItems(6) = "" Then

.AgeDx = O

Else

.AgeDx = ListViewl.ListItems.Item(i).SubItems(6)
End If
Case Else ’blank

End Select

.DOB ListViewl.ListItems.Item(i).SubItems(7)

.age = ListViewl.ListItems.Item(i).SubItems(8)

.DOD

ListViewl.ListItems.Item(i).SubItems(9)
.DEAD = ListViewl.ListItems.Item(i).SubItems(10)
End If
Next i
End With

End Function

Public Function PrMN(Mt) As Double

Select Case Mt

Case "M"

PrMN = 2 * fMutation - fMutation * fMutation
Case "N"

PrMN = (1 - fMutation) ~ 2
End Select

End Function

Public Function PailGKid(MtPa As String, MtKid As String) As Double

Select Case MtPa
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Case "M"

Select Case MtKid

Case "M"
Pai1GKid = (1+fMutation-fMutation*fMutation)/(2-fMutation)
Case "N"
Pal1GKid = fMutation
End Select
Case "N"

Select Case MtKid

Case "M"
PalGKid = (1 - fMutation) ~ 2 / (2 - fMutation)
Case "N"
Pal1GKid = 1 - fMutation
End Select
End Select

End Function

Public Function Pa2Kid(idx As Integer, MtKid As String) As Double
Select Case MtKid
Case "M"
Select Case idx
Case O

Pa2Kid

1}
o

Case 1

Pa2Kid

(1 - fMutation) ~ 2 / (2 - fMutation)

Case 2

Pa2Kid (1 - fMutation) ~ 2 / (2 - fMutation)

Case 3
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Pa2Kid = (3 * fMutation - 2 * fMutation ~ 2) / (2 - fMutation)
End Select
Case "N"
Select Case idx
Case O

Pa2Kid

(1 - fMutation) ~ 2
Case 1

Pa2Kid

fMutation(1 - fMutation)
Case 2

Pa2Kid

fMutation(1 - fMutation)

Case 3

Pa2Kid fMutation ~ 2
End Select
End Select

End Function

Public Function KidG1Pa(MtKid As String, MtPa As String) As Double
Select Case MtKid
Case "M"

Select Case MtPa

Case "M"
KidG1Pa = (1 + fMutation - fMutation ~ 2) / (2 - fMutation)
Case "N"
KidG1Pa = fMutation
End Select
Case "N"

Select Case MtPa

Case "M"
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KidGiPa = 1 - (1 + fMutation - fMutation ~ 2) / (2 - fMutation)
Case "N"
KidGiPa = 1 - fMutation
End Select
End Select

End Function

Public Function KidG2Pa(MtKid As String, idx As Integer) As Double
Select Case MtKid
Case "M"
Select Case idx
Case O
KidG2Pa = 0
Case 1

KidG2Pa

1/ (2 - fMutation)

Case 2

KidG2Pa 1/ (2 - fMutation)
Case 3

KidG2Pa

(3 - 2 * fMutation) / ((2 - fMutation) ~ 2)
End Select
Case "N"

Select Case idx

Case O

KidG2Pa = 1
Case 1

KidG2Pa = 1 - 1 / (2 - fMutation)
Case 2

KidG2Pa = 1 - 1 / (2 - fMutation)
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Case 3
KidG2Pa = 1 - (3 - 2 * fMutation) / ((2 - fMutation) ~ 2)
End Select
End Select

End Function
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