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Abstract 
 

Eikosograms (see Cherry and Oldford, 2003) are diagrams that can be used to show the 
fundamental rules of probability such as Bayes’ theorem.  While Venn diagrams visually demonstrate 
abstract set operations and appear in almost all introductory probability text books, eikosograms are 
more useful in teaching probability theory and calculations, especially when two or three random 
variables are involved.  

Software has been developed  to use and construct eikosograms from data. After reviewing the 
basic concepts and usage of eikosograms, I will introduce the structure of the software and discuss the 
algorithms used. 

 
1 Introduction  
 

  The eikosogram was first introduced by W.H.Cherry and R.W.Oldford in 2003 [1].  It is a unit 
square (area is 1) that ‘visually grounds probability and naturally incorporates the rules of probability 
within its construction’[1].  It can visually identify independence relationships among two or more 
random variables and be used to derive Bayes’ theorem.   

The well-known Venn diagrams and Euler diagrams are useful in logic and set theory, and because 
of the close relationship between ‘set’ and ‘event’, Venn diagrams are used when we calculate the 
probability of an event. However, the diagram does not contain any quantitative information about 
probability, and may visually distort  the statistical relation between events such as independence 
relations (see [1] 3.2). See [1] for more details about the history of ring diagrams including Venn and 
Euler, their relation to religious faith, and their pros and cons when used for teaching statistics. Two 
other diagrams, Outcome trees and Outcome diagrams, are also discussed in [1]. 

Eikosograms clearly demonstrate marginal, conditional and joint distributions of random variables 
as well as the relation between these. In addition, independence relations among variables can easily 
be seen. i.e. flatness usually means some kind of independence. It makes the dependence and 
independence relationships among random variables easy to understand, so statistical modeling and 
design are easy to study. See [2] for a complete discussion of the independence structure among three 
random variables demonstrated by eikosograms, and the graphical and log-linear models. 

Eikosograms can also be used to resolve a number of probability problems and paradox. Oldford 
related [3] discusses examples including the gas station problem, cherry pie paradoxes, twice reversing 
Simpson’s paradox, two-envelope paradox, the Monty Hall problem,  the prisoner’s dilemma and 
others.  

The rest of this essay is organized as follows. Section 2 briefly reviews eikosograms, especially 
those features that are implemented in software.  

Section 3 discusses the structure of the software using UML1, the main algorithms and the data 
structures used to calculate values of the relevant quantities and store data. 

The last section contains possible future work on the development of the software. 
 

2  Eikosogram  
 
       An eikosogram uses a unit square to display different kinds of probabilities of one or more 
random variables. The area of the unit square represents the probability 1.  The unit square is divided 
                                                
1 UML is a standard for object-oriented modeling notations endorsed by the Object Management Group(OMG), and 
industrial consortium on object technologies.  
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into rectangles. The width of each rectangle represents the marginal probability of the corresponding 
random variable and the height is the conditional probability; thus the area of each rectangle matches 
the corresponding joint probability of all random variables involved by Bayes’ theorem. The number 
of such rectangles is equal to the number of all possible combinations of different values of all random 
variables. The rectangles are aligned inside the unit square and divided into non-overlapping strips 
along the horizontal axis.  Each strip is split into smaller rectangles based on the values of the 
‘vertical’ random variable and distinguished by different colours or shadings.  
 

2.1 Grounding probability 
 

        The following two examples of eikosograms will be used in section 2 and 3:  
 

 
Figure 1(a) involves two random variables X and Y; Y has two possible values ‘male’ and ‘female’ 
and X has two possible values ‘yes’ and ‘no’. Since we have a unit square, the length of each side and 
the square area are all equal to 1, so they can be used to represent  probabilities:  
(i). marginal probability of X is the width/area of the vertical strip:   

Pr(X=yes)=1/3 ;    Pr(X=no)=1-1/3=2/3;  
(ii).conditional probabilities of Y given X are the heights of the correspondent internal rectangles:   

Pr(Y=female|X=yes)=2/3;  Pr(Y=female|X=no)=1/4;  Pr(Y=male|X=yes)=1-2/3=1/3 and 
Pr(Y=male|X=no)=1-1/4= 3/4 ;  
(iii)joint probabilities of Y and X are the areas of the corresponding rectangles: 

Pr(Y=female, X=yes)=Pr(Y=female|X=yes)*Pr(X=yes)=2/3*1/3=2/9; 
Pr(Y=female, X=no)=Pr(Y=female|X=no)*Pr(X=no)=1/4*2/3=1/6; 
Pr(Y=male, X=yes)=Pr(Y=male|X=yes)*Pr(X=yes)=1/3*1/3=1/9 and 
Pr(Y=male, X=no)=Pr(Y=male|X=no)*Pr(X=no)=3/4*2/3=1/2; 

(iv) marginal probability of Y are the sum of the corresponding rectangles’ areas, which from (iii) are 
seen to be:  
 Pr(Y=female)=Pr(Y=female,X=yes)+Pr(Y=female,X=no)=2/9+1/6=7/18; 
 Pr(Y=male)= Pr(Y=male,X=yes)+Pr(Y=male,X=no)=1/9+1/2=11/18=1-7/18; 

Y=male 

Y=female 
 

X=yes X=no 

(a) 
Figure 1: Eikosogram for two and three variables 
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Figure 1(b) involves three random variables X,Y and Z, each with two possible values ‘yes’ and ‘no’.   
The width of 1st strip is Pr(X=yes, Z=yes)=1/4 and the height of the left shaded rectangle is 
Pr(Y=yes|X=yes, Z=yes)=2/3, therefore the area of that rectangle is the joint probability 
Pr(X=yes,Y=yes,Z=yes)=1/4*2/3=1/6.  The marginal probability of Y=yes is now the sum of the areas 
of all the shaded rectangles and marginal probability of X is the sum of the width of the 1st and 3rd 
vertical strips. The marginal probability of Z can be read directly from the graph: Pr(Z=yes)=3/5.  
 
In section 3, I will discuss how to calculate these probabilities and construct the eikosograms in Figure 
1 from input data.  See [1] section 4 for more details about the raindrop metaphor of eikosogram. 
 
An eikosogram can apply to any number of random variables and each random variable can have any 
number of possible values. The following eikosogram illustrates the relationships among 4 random 
variables—W,X,and Z are binary while Y has three possible values. 

 
 
To interpret this graph, for example, the area of rectangle ‘A’ is equal to the joint probability 
Pr(Y=2,W=2,X=1,Z=2). 
 

2.2 Symmetry among random variables 
 
We can assign any one random variable to the vertical axis and the rest to the horizontal axis. For 
example, for two variables there are two choices as shown in Figure 3 (a) and (b). 

W=1 W=2 W=1 W=2 W=1 W=2 W=1 W=2 W=1 W=2 W=1 W=2 

X=1 X=2 X=1 X=2 X=1 X=2 

Z=1 Z=2 Z=2 

Y=1 

Y=2 

Y=3 

A 

Figure 2: Eikosogram for multiple variables and values 

| | 
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Figure 3 (a) is the same as Figure 1 (a); if we assign the random variable X to the vertical axis, we 
get (b). Once (a) is given, (b) is fixed – all probabilities must be match. See [1] 4.1.3 for more 
details and the next section for the computation of the probabilities. Similarly for Figure 1(b), we 
can have the following three eikosograms:  

 
 
Of course for eikosograms of three or more random variables, the order of variables assigned to the 
horizontal axis is arbitrary. In the software, the number of graphs displayed is equal to the number of 
random variables involved, with each variable being assigned to the vertical axis once on the order of 
the horizontal variables. See next section for details.  
 

2.3 Water container metaphor and probabilistic independence 
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Figure 4: Different perspectives for three variables 
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Dependence and independence relationships among random variables are obvious from 
eikosograms. Flatness across 2 or more rectangles means the equality of some conditional 
probabilities and hence some kind of conditional probabilistic (or unconditional if completely flat) 
independence. For example: 

 
  
For Figure 5(a), Pr(Y=yes|X=yes,Z=yes) is equal to Pr(Y=yes|X=no,Z=yes), but 
Pr(Y=yes|X=yes,Z=no) is not equal to Pr(Y=yes|X=no,Z=no), similarly for Y=no, thus random 
variable Y is independent of X given Z=yes, but given Z=no, Y and X are dependent.  
For Figure 5(b), Pr(Y=yes|X=yes,Z=yes) is equal to Pr(Y=yes|X=yes,Z=no), and 
Pr(Y=yes|X=no,Z=yes) is equal to Pr(Y=yes|X=no,Z=no), similarly for Y=no, thus random variable Y 
is independent of Z given X, but given Z, Y and X are dependent. 
 
For Figure 5(c), all conditional probabilities of Y are equal, hence Y is independent of X and Y is 
independent of Z, but we don’t know the relation between X and Z, we cannot say the three random 
variables are completely independent with each other. See [3] for more details.  
 
We can imagine that an eikosogram is a water container where a barrier exists between any two 
adjacent vertical strips. When we remove the barrier, the level of water in both containers will become 
the same and represent some sort of conditional independence. This behavior has been simulated in the 
software and will be discussed in detail in the next section.  
 
3.  Software implementation  
 
Eikosogram software is written in Java. The program reads in data from a disk file and generates 
graphs .  I assume the random variables are categorical , the count is integer. The data input file has the 
following format:  
 
variable_name1, value1,value2,...,valueN1 
variable_name2, value1,value2,...,valueN2 

(a) 

Figure 5: Independence in eikosogram 
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 … 
variable_nameM, value1,value2,...,valueNm 
count11,count12,...count1N (where count is integer and N=N2*...*Nm) 
… 
countk1,countk2,...countkN (where k=N1) 
 
For example, the data input file for Figure 1(a) looks like this:  
Y,female,male 
X,yes,no 
40,30 
20,90 
 
List 1. 
 
This file may correspond to the following survey story:  
The survey is about the attitude of students in a class to some school policy: the total number of 
students is 180, 110 male and 70 female; among the male, 20 students support  the policy, 90 don’t; 
while 40 female students support it and 30 don’t. The following table shows the survey results: 
 

 
Data file for Figure 1(b) looks like this: 
Y,yes,no 
Z,yes,no 
X,yes,no 
210,196,42,112 
105,245,252,98 
 
List 2.  
which corresponds to this table of results:  
 

Z=yes Z=no  
X=yes X=no X=yes X=no 

Y=yes 210 196 42 112 
Y=no 105 245 252 98 

                  
                                             Table 2. 

X 
Y 

male 

female 

total 

total yes no 

40 30 70 

20 90 110 

60 120 180 

Table 1. 
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3.1 Grounding probability and generating graphs 
 
The probabilities are calculated by the ratios of the corresponding counts. The following graphs are 
the same as Figure 3 except  the data values in Table 1 are shown in the corresponding rectangles:  

 
The total sum is 180. For Figure 6 (a), the marginal probability of X is Pr(X=yes)=(20+40)/180=1/3; 
the conditional probability of Y given X is Pr(Y=female|X=yes)=40/(40+20)=2/3; similar 
computations apply for the rest of the probabilities.   
The calculations for three or more variables are very similar to the above; the key here is to grab the 
data from the data input file and put it into the correct rectangle (which corresponds to the correct 
random variable values).  The following graph is the same as Figure 4, but with the labels 1 to 8 in 
each rectangle. Rectangles that have the same labels correspond to the same probability count and 
should have the same area.  In each graph, label 1 corresponds to the survey count 210, label 2: 196, 
label 3: 42, label 4: 112, label 5: 105, label 6: 245, label 7: 252, label 8: 98. 
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Figure 7: Different perspectives for three variables 
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Figure 6: Grounding probabilities for two variables 
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It is a bit more involved if the number of variable is more than 3 and the number of values is more 
than 2, but the basic principles remain the same; to rearrange the rectangles in different perspectives, 
we identify them by the random variables and the values corresponding to them. The software can deal 
with any number of variables and any number of values for each. Strictly speaking, this is limited by 
the screen size and resolution, but very rarely we deal with more than 4 variables and more than three 
variable values when using eikosograms.  
 
3.2 Symmetry among random variables 
 
3.2.1 Data structure used for storing the raw data 
The program uses ArrayList from Java collections framework (part of the java.util package) to store 
the raw data read from flat disk file. There are some advantages to using this:  
(i).  Memory efficient: only store the pointer (or reference) in the data structure;  
(ii). Algorithm efficient and robust: the code of the collection framework has been extensively tested, 
and is very professional, thus efficient and succinct.  
(iii). Easy and convenient to use: the add and remove item from list are very easy and there is no need 
to program the reference operations.   
In the program, three ArrayLists are used:  
1. alVarName: used to store variable names; 
2. alVarValue: used to store variable values; 
3. alNum: used to store the number of values for each variable;  
For example:  after reading the data file for figure 1(a), the content of the above ArrayLists are:  
 
Data file(List 1):                                                       ArrayList content : 

 
Y,female,male                                                             alVarName:  Y,X 
X,yes,no                                                                       alVarValue: female,male, yes, no 
40,30                                                                            alNum: 2,2 
20,90 
 
and for Figure 1(b): 
Data file(List 2): 

Y,yes,no                                                                    alVarName: Y,Z,X 
Z,yes,no                                                                    alVarValue: yes,no,yes,no,yes,no 
X,yes,no                                                                    alNum: 2,2,2 
210,196,42,112 
105,245,252,98 
 
The alNum serves as a pointer when we grab values from alVarValue for variables in alVarName: for 
Figure 1(b), the first number ‘2’ in alNum indicates the first 2 values in alVarValue which are ‘yes’ 
and ‘no’ are the values of the first random variable in alVarName which is ‘Y’, and so on.  
The integer counts are stored in an array called ‘probCount’, the order of those number in the array 
corresponds to the contents of the above three ArrayLists. The  computation and construction of an  
eikosogram are based on these data structures. E.g. for Figure 3, after generating (a), before 
generating (b),  the content of the above data structures was changed as follow:  
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 Before generating 
(a) 

After (a), before (b) 

alVarName Y,X X,Y 
alVarValue female,male,yes,no yes,no,female,male 
alNum 2,2 2,2 
probCount 40,30,20,90 40,20,30,90 
                  

Table 3.  
 
Similarly for figure 4:  
 

 Before (a) After (a),before(b) After(b), before(c) 
alVarName Y,Z,X X,Z,Y Z,Y,X 
alVarValue yes,no,yes,no,yes,no yes,no,yes,no,yes,no yes,no,yes,no,yes,no 
alNum 2,2,2 2,2,2 2,2,2 
probCount 210,196,42,112,105,245,252,98 210,42,105,252,196,112,245,98 210,105,196,245,42,252,112,98 

               
                Table 4. 

 
The algorithm used is pretty straightforward; in the ArrayList, we circulate the contents, the number 
of steps of circulation being based on the content of ‘alNum’. The change of ‘probCount’ is a bit 
more complicated because the algorithm needs to deal with any number of variables each having any 
number of values. It becomes trivial after careful study of the situation. This algorithm is 
implemented in the method ‘reCalProbCount()’ in the class ‘Eikosogram’ of the source code file. 
 

3.3 Water container metaphor and probabilistic independence 
 
The simulation of the water container metaphor to form some sort of probabilistic independence is 
the main function of the program.  The barriers are represented by small buttons on the top of the 
graph, like this:  

 
When we click one of the buttons to remove the barrier, several situations need to be considered:  

Y=male 

Y=female 
 

X=yes X=no 

(a) Figure 8: Barriers for two variables (b) 

  0 1 

  0 

X=no 

X=yes 
 

Y=female Y=male 

  0 1 

  0 

40 

30 

20 

90 

40 

30 

20 

90 

barriers 

3

2  

4

1  

7

4  

11

2  

X=no 

X=yes 
 

  0 

  0 

30 

7

4  

11

2  

3

1  
18

7  



 10 

 
3.3.1 None of the other barriers ever clicked before  
   
  This is the easiest situation, i.e. the first time we click a barrier after the eikosogram is generated, we 
only need to consider the two vertical ‘chambers’  separated by the barrier clicked and, of course, all 
perspectives of the eikosogram need to be recalculated. The following are two examples:  
 
Example 1.  (See Figure 8) Click the barrier in Figure 8 (a): the rule here is to keep the marginal of X 
fixed, the sum of the corresponding data counts does not change. i.e.  for Figure 9(a), the sum of the 
data count of the left strip is still 40+20=60, the sum of the lower two rectangles is still the 40+30=70, 
this simulates the behavior of removing the barrier from the water container, with the amount of water 
in the chambers separated by the barrier staying the same. To adjust the water level to be the same, the 
computation is:  
 
Data count for Y=female, X=yes changed from 40 to (40+30)/3=70/3; 
Data count for Y=female, X=no changed from 30 to (40+30)*2/3=140/3; 
Data count for Y=male, X=yes changed from 20 to (20+90)/3=110/3; 
Data count for Y=male, X=no changed from 90 to (20+90)*2/3=220/3; 
 
This change must happen in the corresponding rectangles in (b) also. Recalculating the probabilities 
based on the changed data count, we get the following eikosograms after clicking the barrier in Figure 
8(a) to arrive at the equal water levels as in Figure 9 (a):  
 

 
 
 
The calculation of the probability is the same as before, e.g. 
Pr(Y=femal|X=yes)=( 70/3 )/(70/3+110/3)=7/18, etc. This is exactly what happened in the program. 
Clicking the barrier in (b) generates the same graph based on a similar analysis.  
 
Example 2.  Figure 10 is the same as figure 7 & 4, the data counts correspond to each rectangle are 
listed in Table 5. 

Y=male 

Y=female 
 

X=yes X=no 

(a) 
Figure 9: Barriers for two variables 

(b) 

  0 1 

  0 

X=no 

X=yes 
 

Y=female Y=male 

  0 1 

  0 

Click this 

3

110  

18

7  

3

220  

3

70  
3

140  

3

140  
3

220  

3

1  

3

70  
3

110  

3

1  
18

7  



 11 

 
 
         

data 
count 210 196 42 112 105 245 252 98 

 
    Table 5.  
 
The total is 1260.  

 
 
click the left barrier in Figure 10 (a), the rectangles labeled 1,2,5,6 in (a)(b)(c)  need to be recalculated.  
In (a). The recalculation  is  similar to example 1 but with an important little difference ( pay attention 

to the ‘
5

3
÷ ’ part ):   

Data count for Y=yes,X=yes,Z=yes (rectangle 1) changed from 210 to ( )
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Data count for Y=yes,X=no,Z=yes (rectangle 2) changed from 196 to  
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Data count for Y=no,X=yes,Z=yes (rectangle 5) changed from 105 to ( )
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Data count for Y=no,X=no,Z=yes  (rectangle 6) changed from 245 to ( )
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3
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The calculation formula is readily derived from the rules discussed in Example 1, i.e. for graph (a) (on 
which the barrier was removed), keep the marginal of the joint distribution of X and Z fixed, and keep 

(a) 
Figure 10:  Eikosograms for three variables before removing barrier 
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the sum of data account in corresponding rectangles fixed, which simulates the amount of water in 
tanks not changing when we remove barrier.  
 
We summarize the new data distribution in the Table 6: 
  
         

data 
count 1015/6 1421/6 42 112 875/6 1225/6 252 98 

 
    Table 6.  
Based on these data, recalculate all probabilities and regenerate all (a),(b),(c), we get  
 

 
 
 
Note that since the sum of the data count of rectangles 1 & 2, 5&6 , 1&5 and 2&6 don’t change, the 
joint probabilities of X & Z and Z & Y (Figure 11 (a) and (b) ) don’t change,  but the joint probability 
of Y and X does change since rectangle 1 changed and 3 didn’t. E.g. Originally, 
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Figure 11:  Eikosograms for three variables after removing the left barrier 

Y=no 

Y=yes 

X=yes X=no X=yes X=no 

Z=yes Z=no 

  1   0 

  0 

(b) 

X=no 

X=yes 

Z=yes Z=no Z=yes Z=no 

Y=yes Y=no 

  1   0 

  0 

(c) 

Z=no 

Z=yes 

Y=yes Y=no Y=yes 

X=no X=yes 

Y=no 

  1   0 

  0 

Clicked this 

1 2 

3 

4 

5 6 7 8 

1 
3 

5 
7 

2 4 6 
8 

1 

3 

5 

7 

2 

4 

6 

8 

181

145  25

18  

341

125  299

203  
37

25  

12

5  

11

3  12
5  

15

8  

7

1  

54

29  

1 5 6 7 8 2 3 4 

4

1  
1080

181  
60

29  
1080

821  
90

29  
9

4   
6

5  
5

3  



 13 

6757.
37
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),|Pr( !=

+

==== noXnoYnoZ  

The computer screen can not distinguish this difference, so it shows some ‘flatness’, but we cannot 
infer independence of Z and Y given X=no; this small ‘drawback’ is due to the equipment we used to 
display the graph, not to the eikosogram itself.  The software implementation includes a button that 
can be used to switch between fraction and decimal display, because sometimes the fraction contains a  
huge numerator or denominator (see Examples in 3.3.3). Due to the above analysis, before making any 
conclusion of independence, we need to check the fractional display.  

 
3.3.2 Some barriers have been removed already 
 
Obviously the barriers have to be adjacent to the one we are about to click, otherwise we don’t need to 
consider it since it does not affect what we are going to do. Let’s continue the Example 2 in the last 
section. We now remove the middle barrier in (a).  Since the left barrier has been removed already,  
the water tanks of 1,2,5 & 6 have to be considered as the same container. Again we don’t change the 
joint distribution of X & Z in (a) and keep the sums of correspondent data counts the same as before. 
The rectangles 1,2,3,5,6,7 need to be recalculated (the data before this action is in Table 6 now):  

Data count for Y=yes,X=yes,Z=yes (rectangle 1) changed from 
6

1015  to 

5

672

6

5

4

1
)42

6

1421

6

1015
( =÷!++ ; 

 

Data count for Y=yes,X=no,Z=yes (rectangle 2) changed from 
6

1421  to 

25

4704

6

5
)
4

1

5

3
()42

6

1421

6

1015
( =÷!"++ ; 

 
Data count for Y=yes,X=yes,Z=no (rectangle 3) changed from 42  to 

25

3136

6

5
)
5

3

6

5
()42

6

1421

6

1015
( =÷!"++ ; 

Similar calculations apply for rectangle 5, 6, 7.  The new data counts are summarized in table 7: 
 
         

data 
count 672/5 4704/25 3136/25 112 903/5 6321/25 4214/25 98 

 
    Table 7.  
 
Based on these data, recalculating all probabilities and regenerating all (a), (b), (c), we get  

1 5 6 7 8 2 3 4 
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It’s easy to verify the results using the same calculation as before applied to the data in Table 7.  
 
If we remove the right barrier second, the calculation will be the same as 3.3.1 since the middle barrier 
still exists. If we remove the right barrier second and the middle one third, the calculation will be 
similar to the last example, only this time the rectangles 3,4,7,8 also need to be considered as the same 
tank. 
 
Data count after removing left and right barriers in (a): 
 
         

data 
count 1015/6 1421/6 539/6 385/6 875/6 1225/6 1225/6       875/6 

 
     Table 8.  
 
Data count after removing all barriers in (a): 
         

data 
count 140 196 392/3 280/3 175 245 490/3      350/3 

 
     Table 9. 
 
It’s easy to verify the probabilities in Figure 13 from the data in Table 8 and Figure 14 from Table 9.  
 

(a) 
Figure 12:  Eikosograms for three variables after removing the middle barrier 
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We can easily see from Figure 13(a) that given Z, Y and X are independent; this relation is also shown 
in (b). No other independence relationships exist.  
 

 
From Figure 14, we can see that, Y and X are independent given Z, which is also shown in (b);  Y and 
Z are independent given X, shown in ( c );  No other independence relationships exist.  
 
3.3.3 Remove barriers from a different container 
 
 
In Figure 11, reproduced here as Figure 15(data as in Table 10), has the left barrier removed in (a). We 
now consider what happens when we follow this by removing the left barrier in (b). This removal  
affects the rectangles 1 & 2 but not 5 & 6. 

(a) 
Figure 14:  Eikosograms for three variables after removing all barriers in (a) 
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(a) 
Figure 13:  Eikosograms for three variables after removing the right barrier 
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data 
count 1015/6 1421/6 42 112 875/6 1225/6 252 98 

 
  Table 10.  Data  after removing the left barrier in (a): 
 
We apply the same method when we remove the barrier in (a). Then rectangles 1,2,3,4 will be changed 
in area but not 5,6, and so the flatness of rectangles 1,2 in (a) will be broken. Figure 16 shows the 
result:  

 

(a) 

Figure 16:  Eikosograms for three variables  removing  barriers from different graphs, as implemented 
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(a) 
Figure 15:  Eikosograms for three variables removing  barriers from different graphs 
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The data in each rectangle after removing the left barrier in  (b) would then be as in Table 11: 
         

data 
count 36743/240 60697/240 13937/240 23023/240 875/6 1225/6 252 98 

 
    Table 11. 
 
While simple, this approach has a significant drawback. Because the left barrier has already been 
removed, this was asserting a conditional independence and it would be best if this were preserved, 
that is the flatness should still be there after the action in (b). In other words, from a modeling 
perspective, it might be reasonable to keep the independence of Y and X given Z= yes when we 
further assert the independence of X and Z given Y=yes. Since the sum of rectangles 1&2 does not 
change after we remove the left barrier in (b), if we keep the flatness in (a), the position of the left 
barrier (which has been removed already) in (a) has to be changed, i.e. we have to adjust the joint 
distribution of X and Z for Z=yes. This will cause the change of rectangle 5&6 in all three 
eikosograms. For example, when we remove the left barrier in (b),  not only the rectangle 1,2,3,4 will 
be adjusted, but also 5&6. This side effect is caused by our intention to keep the independence of Y 
and X given Z=yes.  Here are some calculations and results:  
We need to recalculate the joint probability of X=yes,Z=yes and data count of  rectangle 5&6. (The 
sum of 1&2 is 406) 

800

181
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3

240

36743
),Pr( =!!=== yesZyesX ; 

data count in rectangle 5 is 
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The data count in each rectangle under the new independence restriction:  
         

data 
count 36743/240 60697/240 13937/240 23023/240 6335/48 10465/48 252 98 

 
    Table 12. 
 
Now the problem is: Can we implement this type of behaviour in software assuming the user can 
remove (or reinstall) any barrier at any time? For example: continuing with Figure 17, what if the user 
removes the right barrier in (a), which will cause a change of 3,4,7,8 in (a), but in (b), since the left 
barrier has been removed already, the change in 3,4 will cause a change in 1,2 and that is related to 5,6 
because of (a).  How about we remove a barrier in (c) next? What about the eikosogram for four 
random variables and more than two values each (Figure 2)?  
 
These problems remain open. The software implemented here always assumes that conditional 
independences are not necessarily preserved in one eikosogram when some are asserted (barriers 
removed) in another.  
 
3.4 Software Structure 
 
The software is written in Java and includes 6 classes: Eikosogram (main function), EikosoCanvas, 
EikosoRec, EikosoBarrier, EikosoInternalFrm and Fraction. All calculations in section 3.3 use rational 
arithmetic to avoid rounding errors. The Fraction class defines the rational computation and the 
method to display the fraction on the screen. Here is the class structure using UML:   
 
 
 

(a) 
Figure 17:  Eikosograms for three variables  removing  barriers from different graphs 
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The key component of this class is the gcd (greatest common divisor); gcd is calculated using the gcd 
method of BigInteger class java.math.  
 
EikosoBarrier class defines characteristics and the basic behaviours of the barriers in each graph.  
Since it is clickable, this class is derived from the java swing JButton. The index field identifies the 
barrier on the graph and, if ‘pressed’, the colour of this barrier will change to red, otherwise the colour 
is green (may not true on mac or unix).  
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EikosoRec defines characteristic and behaviours of each small rectangle in the eikosogram. Each 
rectangle has a size given by its width and height and a position given by the left top coordinate: xPos 
and yPos. Also, the characteristic contains the colour or shade given by the HSB values and the data 
count corresponding to this rectangle. The data count includes an original one when the user first input 
the data so that the user can reinstall the barrier to resume the original graph, and a current data count 
calculated when the user removed a barrier. The rectangle is identified by the random variable value 
corresponding to it.  
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EikosoCanvas is the most important class of this application; all the calculations discussed in the last 
section of this paper are in this class. Each ‘canvas’ holds one graph which includes a two dimensional 
array of ‘rectangles’ such as Figure 17 (a). To display Figure 17, we need to generate three such 
canvas objects.  Besides the rectangles, the ‘canvas’ also contains some barriers. The call back 
function ‘barActionPerformed()’ defines the actions after the user removes or reinstalls a barrier which 
in turn calls the ‘reCalRec()’ or ‘resumeRec()’ method to do the calculations mentioned before.  
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EikosoInternalFrm is a placeholder to hold ‘EikosoCanvas’, it only has one characteristic ‘index’ 
which identifies itself.  
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Eikosogram  is the main function of this java application, it defines some basic functions such as 
changing colours and reading the data file to generate the original graph. The ‘reCalProbCount()’ 
method defines the calculations which generate different perspectives of an eikosogram. The 
‘reCalCanvas()’ method is called by the EikosoCanvas method ‘ recalRec() ‘ to do the calculation on 
other perspectives of the graph when the user removes a barrier. The resize behaviour of the main 
frame is also defined here.  (UML next page)  
 
See appendix for the documents of these classes.  
 
3.5 Examples in the software 
 
The following examples are included in the software:  
(i). Binary Association including: Perfect positive association; Part perfect positive association; 
Positive association; Independence; Negative association; Part perfect negative association; Perfect 
negative association; 
(ii). Relating Events including: Coincident; Complementary; Mutually Exclusive; Independent; 
(iii). Independence including: Y indep. X; Y indep. X given Z; Y indep. X given Z value; Not quite 3 
way independence; 3 way independence;  
For the details of these examples, see [1] section 4.3 
 
4. Future work 
 
The current version of the software has implemented everything until 3.3.3. It does not maintain user 
defined conditional independencies across graphs. That is when a barrier is removed from one 
eikosogram, the results do not respect barriers previously removed in other eikosograms. The future 
work of the software development therefore includes maintaining all the previous independence 
relation constraints when we remove a barrier.  We may also study and compare the results of 
applying different probability models to analyze contingence table and the ‘shape’ of data visualized 
by eikosogram.  
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Appendix: Eikosogram software documents 
 

Class EikosoCanvas 
public class EikosoCanvas 
extends javax.swing.JPanel  

Title: EikosoCanvas.java 

Description:  

Copyright: Copyright (c) 2005 

Company: university of waterloo 

Version: 
1.0 

Author: 
glenn lee 
 

Constructor Detail  

EikosoCanvas 

 
public EikosoCanvas(EikosoRec[][] rec, 
                    int index, 
                    Eikosogram ef) 

Create an EikosoCanvas object with rec. 
Parameters: 

rec - two dimensional EikosoRec on this canvas 
index - index of this canvas 
ef - the host of this canvas 
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Method Detail  

getIndex 

 
public int getIndex() 
Returns: 

Index of this canvas 
 

addLabels 

 
private void addLabels() 

Add labels around the graph 
 

addValues 

 
private void addValues() 

The probVal[][] is calculated in calRecs(), this method set location and add the probability 
value labels on the graph. Also need to add two extra "0" labels. 

 

getBar 

 
public EikosoBarrier[] getBar() 
Returns: 

Array of barriers of this canvas 
 

barActionPerformed 

 
public void barActionPerformed(java.awt.event.ActionEvent e) 

This call back function reacts on the user's click one barrier. 
Parameters: 

e - the event that user click a barrier 
 

resumeRec 

 
private void resumeRec(EikosoBarrier curBar) 
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This method resumes the correspondent EikosoRec to its original status. 
Parameters: 

curBar - the barrier that user clicked 
 

recalRec 

 
private void recalRec(EikosoBarrier curBar) 

Recalculate the correspondent EikosoRecs when users first click a barrier. 
Parameters: 

curBar - the barrier that user clicked 
 

getRec 

 
public EikosoRec[][] getRec() 
Returns: 

This canvas' eikosoRecs 
 

setColor 

 
public void setColor(java.awt.Color c) 

Set the color of this canvas. 
Parameters: 

c - the color to be set for this canvas 
 

getColor 

 
public java.awt.Color getColor() 
Returns: 

the color of this canvas 
 

calColor 

 
private void calColor() 

Assume instance variable 'Color c' has been set already, this method calculate colours for each 
of its EikosoRec 
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calRecs 

 
private void calRecs() 

Calculate recs' width, height, xPos, and yPos. 
 

reCalGraph 

 
public void reCalGraph(int width, 
                       int height) 

The host method to refresh a canvas 
Parameters: 

width - The width of this canvas 
height - The height of this canvas 

 

clear 

 
public void clear() 

Remove everything from this canvas 
 

paintComponent 

 
public void paintComponent(java.awt.Graphics g) 

Draw this canvas 
Parameters: 

g - graphic instance used to draw. 
 

 
 

 
Class Eikosogram 
public class Eikosogram 
extends javax.swing.JFrame  

Title: Eikosogram.java 

Description:  
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Copyright: Copyright (c) 2005 

Company: university of waterloo 

Version: 
1.0 

Author: 
glenn lee 

Constructor Detail  

Eikosogram 

 
public Eikosogram() 

Create an empty frame. 
 

Method Detail  

makeBasicForm 

 
private void makeBasicForm() 

Generate the example menu and some general purpose buttons 
 

jbtnChangeColorActionPerformed 

 
public void jbtnChangeColorActionPerformed(java.awt.event.ActionEvent e) 

Call back function for the change color button. 
Parameters: 

e - The event that user click the change color button 
 

jbtnCloseActionPerformed 

 
public void jbtnCloseActionPerformed(java.awt.event.ActionEvent e) 

Call back function for the close button. used to exit the application 
Parameters: 

e - The event that user click the close button. 
 

jbtnOpenFileActionPerformed 
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public void jbtnOpenFileActionPerformed(java.awt.event.ActionEvent e) 

Call back function for the open file button. Display the file chooser, then read file. 
Parameters: 

e - The event that user click the open file button. 
 

jbtnResetActionPerformed 

 
public void jbtnResetActionPerformed(java.awt.event.ActionEvent e) 

Call back function for the reset button. Resume the original eikosogram. 
Parameters: 

e - The event that user click reset button. 
 

readDataFile 

 
private void readDataFile(java.lang.String str) 

Read disc file 
Parameters: 

str - File name 
 

clearScreen 

 
private void clearScreen() 

Remove all internal frames from the main frame. 
 

readFile 

 
private void readFile() 

Read data file operation 
Throws: 

IOException -  
 

genGraph 

 
private void genGraph() 

Generate all eikosograms 
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reCalCanvas 

 
public void reCalCanvas(int ind, 
                        EikosoRec[][] changedRec) 

This method is called by reCalRec() from EikosoCanvas, it recalculates all graphs except the 
'ind' one using the new changed EikosoRec 

Parameters: 
ind - The index of canvas that has been changed already, other canvases need to be changed 
according to it. 
changedRec - The two dimension array of the changed EikosoRec 

 

exitForm 

 
private void exitForm(java.awt.event.WindowEvent evt) 

Exit the Application 
 

 

Class EikosoRec 
public class EikosoRec  

Constructor Detail  

EikosoRec 

 
public EikosoRec(Fraction count, 
                 java.lang.String[] varName, 
                 java.lang.String[] varValue) 

Create a new EikosoRec object 
Parameters: 

count - Data count corresponds to this rectangle 
varName - Random variable names 
varValue - Random variable values correspond to 'varName' 

 

Method Detail  

getVarName 

 
public java.lang.String[] getVarName() 
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Returns: 
The variable names of this rectangle 

 

getVarValue 

 
public java.lang.String[] getVarValue() 
Returns: 

The variable values of this rectangle 
 

setchanged 

 
public void setchanged(boolean b) 

Set the flag if this rectangle changed or not 
Parameters: 

b - True if changed, false if not 
 

getchanged 

 
public boolean getchanged() 
Returns: 

If this rectangle changed 
 

getLabel 

 
public javax.swing.JLabel[] getLabel() 
Returns: 

The label corresponds to this rectangle 
 

getX 

 
public int getX() 
Returns: 

The X coordinates of the left top corner of this rectangle 
 

getY 
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public int getY() 
Returns: 

The Y coordinates of the left top corner of this rectangle 
 

setX 

 
public void setX(int x) 

Set the X coordinate of the left top corner of this rectangle 
Parameters: 

x - The X coordinates 
 

setY 

 
public void setY(int y) 

Set the Y coordinate of the left top corner of this rectangle 
Parameters: 

y - The Y coordinates 
 

getWidth 

 
public int getWidth() 
Returns: 

The width of this rectangle 
 

getHeight 

 
public int getHeight() 
Returns: 

The height of this rectangle 
 

getHSB 

 
public float[] getHSB() 
Returns: 

The hsb color of this rectangle 
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setHeight 

 
public void setHeight(int height) 

Set the height of this rectangle 
Parameters: 

height - The height about to be set 
 

setWidth 

 
public void setWidth(int width) 

Set the width of this rectangle 
Parameters: 

width - The width about to be set 
 

setHSB 

 
public void setHSB(float h, 
                   float s, 
                   float b) 

Set the hsb color of this rectangle 
Parameters: 

h - h component of color 
s - s component of color 
b - b component of color 

 

getOriCount 

 
public Fraction getOriCount() 
Returns: 

The original data count corresponds to this rectangle 
 

getCurCount 

 
public Fraction getCurCount() 
Returns: 

The current data count corresponds to this rectangle 
 

setCurCount 
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public void setCurCount(Fraction count) 

Set the current data count of this rectangle after the rectangle changed 
Parameters: 

count - The data count about to be set 
 

setOriCount 

 
public void setOriCount(Fraction count) 

Set the original data count of this rectangle 
Parameters: 

count - The data count about to be set 
 

isEqual 

 
public boolean isEqual(java.lang.String[] names, 
                       java.lang.String[] values) 

Test if two rectangles correspond to the same data count 
Parameters: 

names - The variable name of the rectangle this compared 
values - The correspondent variable value 

Returns: 
True if 'this' corresponds to the same data count with the rectangle compared 

 

 
Class EikosoBarrier 
public class EikosoBarrier 
extends javax.swing.JButton  

Title: EikosoBarrier 

Description:  

Copyright: Copyright (c) 2005 

Company: university of waterloo 

Version: 
1.0 

Author: 



 36 

glenn lee 

Constructor Detail  

EikosoBarrier 

 
public EikosoBarrier(int ind) 

Create a barrier object 
Parameters: 

ind - The index of this barrier in one perspective of eikosogram 
 

Method Detail  

getIndex 

 
public int getIndex() 
Returns: 

The index of this barrier 
 

getPressed 

 
public boolean getPressed() 
Returns: 

True if this barrier has been removed, false otherwise 
 

setPressed 

 
public void setPressed(boolean b) 

Set the status of this barrier: removed or not 
Parameters: 

b - True if this barrier has been removed, false if not 
 

 
Class EikosoInternalFrm 
public class EikosoInternalFrm 
extends javax.swing.JInternalFrame  
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Title: EikosoInternalFrm.java 

Description:  

Copyright: Copyright (c) 2005 

Company: university of waterloo 

Version: 
1.0 

Author: 
glenn lee 

Constructor Detail  

EikosoInternalFrm 

 
public EikosoInternalFrm(java.lang.String title, 
                         boolean b1, 
                         boolean b2, 
                         boolean b3, 
                         boolean b4, 
                         int ind) 

Create an internal frame to hold one perspective of eikosogram 
Parameters: 

title - The title of this frame 
b1 - Resizable 
b2 - Closable 
b3 - maximizable 
b4 - Iconifiable 
ind - The index of this frame 

 

Method Detail  

getIndex 

 
public int getIndex() 
Returns: 

The index of this frame 
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Class Fraction 
public class Fraction  

Title: Fraction 

Description:  

Copyright: Copyright (c) 2005 

Company: university of waterloo 

Version: 
1.0 

Author: 
glenn lee 

Constructor Detail  

Fraction 

 
public Fraction(java.lang.String numerator, 
                java.lang.String denominator) 

Create one fraction 
Parameters: 

numerator - The numerator of this fraction 
denominator - The denominator of this fraction 

 

Fraction 

 
public Fraction() 

Create the fraction '0' 
 

Method Detail  

floatValue 

 
public float floatValue() 

The float value of this fraction 
Returns: 
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The float value 
 

setZero 

 
public void setZero() 

Set this fraction to '0' 
 

toString 

 
public java.lang.String toString() 

The string display of this fraction 
Returns: 

The string 
 

simplify 

 
private void simplify() 

Divide both numerator and denominator by their gcd 
 

toFraction 

 
public static Fraction toFraction(java.lang.String s) 

Convert a string to a fraction 
Parameters: 

s - The string about to be converted 
Returns: 

A fraction object of the string 
 

getNumerator 

 
public java.math.BigInteger getNumerator() 
Returns: 

The numerator of this fraction 
 

getDenominator 
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public java.math.BigInteger getDenominator() 
Returns: 

The denominator of this fraction 
 

setNumerator 

 
public void setNumerator(java.math.BigInteger b) 

Set the numerator of this fraction 
Parameters: 

b - The numerator about to be set 
 

setDenominator 

 
public void setDenominator(java.math.BigInteger b) 

Set the denominator of this fraction 
Parameters: 

b - The denominator about to be set 
 

getGcd 

 
public java.math.BigInteger getGcd() 
Returns: 

The gcd of numerator and denominator of this fraction 
 

setGcd 

 
public void setGcd(java.math.BigInteger num, 
                   java.math.BigInteger den) 

Set the gcd of this fraction 
Parameters: 

num - The numerator of a fraction to be set 
den - The denominator of a fraction to be set 

 

add 

 
public Fraction add(Fraction f) 

Add 'this' to another fraction f 
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Parameters: 
f - A fraction to be added 

Returns: 
The sum of two fractions 

 

subtract 

 
public Fraction subtract(Fraction f) 

Subtract f from 'this' 
Parameters: 

f - The fraction to be subtracted 
Returns: 

The result of the subtraction 
 

multiply 

 
public Fraction multiply(Fraction f) 

Multiply 'this' by a fraction f 
Parameters: 

f - The fraction to be multiplied 
Returns: 

The result of the multiplication 
 

multiply 

 
public Fraction multiply(int i) 

Multiply 'this' by a integer i 
Parameters: 

i - The integer to be multiplied 
Returns: 

The result of the multiplication 
 

divide 

 
public Fraction divide(Fraction f) 

Divide 'this' by a fraction f 
Parameters: 

f - The fraction to be divided 
Returns: 
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The result of the division; null if f is zero 
 

divide 

 
public Fraction divide(int i) 

Divided 'this' by an integer i 
Parameters: 

i - The integer to be divided 
Returns: 

The result of the division; null if i is zero 
 

 


