

Eikosograms and Their Software Implementation

By Glenn Lee

glee@math.uwaterloo.ca

 1

Abstract

Eikosograms (see Cherry and Oldford, 2003) are diagrams that can be used to show the
fundamental rules of probability such as Bayes’ theorem. While Venn diagrams visually demonstrate
abstract set operations and appear in almost all introductory probability text books, eikosograms are
more useful in teaching probability theory and calculations, especially when two or three random
variables are involved.

Software has been developed to use and construct eikosograms from data. After reviewing the
basic concepts and usage of eikosograms, I will introduce the structure of the software and discuss the
algorithms used.

1 Introduction

 The eikosogram was first introduced by W.H.Cherry and R.W.Oldford in 2003 [1]. It is a unit
square (area is 1) that ‘visually grounds probability and naturally incorporates the rules of probability
within its construction’[1]. It can visually identify independence relationships among two or more
random variables and be used to derive Bayes’ theorem.

The well-known Venn diagrams and Euler diagrams are useful in logic and set theory, and because
of the close relationship between ‘set’ and ‘event’, Venn diagrams are used when we calculate the
probability of an event. However, the diagram does not contain any quantitative information about
probability, and may visually distort the statistical relation between events such as independence
relations (see [1] 3.2). See [1] for more details about the history of ring diagrams including Venn and
Euler, their relation to religious faith, and their pros and cons when used for teaching statistics. Two
other diagrams, Outcome trees and Outcome diagrams, are also discussed in [1].

Eikosograms clearly demonstrate marginal, conditional and joint distributions of random variables
as well as the relation between these. In addition, independence relations among variables can easily
be seen. i.e. flatness usually means some kind of independence. It makes the dependence and
independence relationships among random variables easy to understand, so statistical modeling and
design are easy to study. See [2] for a complete discussion of the independence structure among three
random variables demonstrated by eikosograms, and the graphical and log-linear models.

Eikosograms can also be used to resolve a number of probability problems and paradox. Oldford
related [3] discusses examples including the gas station problem, cherry pie paradoxes, twice reversing
Simpson’s paradox, two-envelope paradox, the Monty Hall problem, the prisoner’s dilemma and
others.

The rest of this essay is organized as follows. Section 2 briefly reviews eikosograms, especially
those features that are implemented in software.

Section 3 discusses the structure of the software using UML1, the main algorithms and the data
structures used to calculate values of the relevant quantities and store data.

The last section contains possible future work on the development of the software.

2 Eikosogram

 An eikosogram uses a unit square to display different kinds of probabilities of one or more
random variables. The area of the unit square represents the probability 1. The unit square is divided

1 UML is a standard for object-oriented modeling notations endorsed by the Object Management Group(OMG), and
industrial consortium on object technologies.

 2

into rectangles. The width of each rectangle represents the marginal probability of the corresponding
random variable and the height is the conditional probability; thus the area of each rectangle matches
the corresponding joint probability of all random variables involved by Bayes’ theorem. The number
of such rectangles is equal to the number of all possible combinations of different values of all random
variables. The rectangles are aligned inside the unit square and divided into non-overlapping strips
along the horizontal axis. Each strip is split into smaller rectangles based on the values of the
‘vertical’ random variable and distinguished by different colours or shadings.

2.1 Grounding probability

 The following two examples of eikosograms will be used in section 2 and 3:

Figure 1(a) involves two random variables X and Y; Y has two possible values ‘male’ and ‘female’
and X has two possible values ‘yes’ and ‘no’. Since we have a unit square, the length of each side and
the square area are all equal to 1, so they can be used to represent probabilities:
(i). marginal probability of X is the width/area of the vertical strip:

Pr(X=yes)=1/3 ; Pr(X=no)=1-1/3=2/3;
(ii).conditional probabilities of Y given X are the heights of the correspondent internal rectangles:

Pr(Y=female|X=yes)=2/3; Pr(Y=female|X=no)=1/4; Pr(Y=male|X=yes)=1-2/3=1/3 and
Pr(Y=male|X=no)=1-1/4= 3/4 ;
(iii)joint probabilities of Y and X are the areas of the corresponding rectangles:

Pr(Y=female, X=yes)=Pr(Y=female|X=yes)*Pr(X=yes)=2/3*1/3=2/9;
Pr(Y=female, X=no)=Pr(Y=female|X=no)*Pr(X=no)=1/4*2/3=1/6;
Pr(Y=male, X=yes)=Pr(Y=male|X=yes)*Pr(X=yes)=1/3*1/3=1/9 and
Pr(Y=male, X=no)=Pr(Y=male|X=no)*Pr(X=no)=3/4*2/3=1/2;

(iv) marginal probability of Y are the sum of the corresponding rectangles’ areas, which from (iii) are
seen to be:
 Pr(Y=female)=Pr(Y=female,X=yes)+Pr(Y=female,X=no)=2/9+1/6=7/18;
 Pr(Y=male)= Pr(Y=male,X=yes)+Pr(Y=male,X=no)=1/9+1/2=11/18=1-7/18;

Y=male

Y=female

X=yes X=no

(a)
Figure 1: Eikosogram for two and three variables

Y=no

Y=yes

X=yes X=no X=yes X=no

Z=yes Z=no

(b)

 0 1

 0

 1 0

 0

3

2

4

1

3

2

9

4

7

1

15

8

3

1
4

1

5

3
6

5

 3

Figure 1(b) involves three random variables X,Y and Z, each with two possible values ‘yes’ and ‘no’.
The width of 1st strip is Pr(X=yes, Z=yes)=1/4 and the height of the left shaded rectangle is
Pr(Y=yes|X=yes, Z=yes)=2/3, therefore the area of that rectangle is the joint probability
Pr(X=yes,Y=yes,Z=yes)=1/4*2/3=1/6. The marginal probability of Y=yes is now the sum of the areas
of all the shaded rectangles and marginal probability of X is the sum of the width of the 1st and 3rd
vertical strips. The marginal probability of Z can be read directly from the graph: Pr(Z=yes)=3/5.

In section 3, I will discuss how to calculate these probabilities and construct the eikosograms in Figure
1 from input data. See [1] section 4 for more details about the raindrop metaphor of eikosogram.

An eikosogram can apply to any number of random variables and each random variable can have any
number of possible values. The following eikosogram illustrates the relationships among 4 random
variables—W,X,and Z are binary while Y has three possible values.

To interpret this graph, for example, the area of rectangle ‘A’ is equal to the joint probability
Pr(Y=2,W=2,X=1,Z=2).

2.2 Symmetry among random variables

We can assign any one random variable to the vertical axis and the rest to the horizontal axis. For
example, for two variables there are two choices as shown in Figure 3 (a) and (b).

W=1 W=2 W=1 W=2 W=1 W=2 W=1 W=2 W=1 W=2 W=1 W=2

X=1 X=2 X=1 X=2 X=1 X=2

Z=1 Z=2 Z=2

Y=1

Y=2

Y=3

A

Figure 2: Eikosogram for multiple variables and values

| |

 4

Figure 3 (a) is the same as Figure 1 (a); if we assign the random variable X to the vertical axis, we
get (b). Once (a) is given, (b) is fixed – all probabilities must be match. See [1] 4.1.3 for more
details and the next section for the computation of the probabilities. Similarly for Figure 1(b), we
can have the following three eikosograms:

Of course for eikosograms of three or more random variables, the order of variables assigned to the
horizontal axis is arbitrary. In the software, the number of graphs displayed is equal to the number of
random variables involved, with each variable being assigned to the vertical axis once on the order of
the horizontal variables. See next section for details.

2.3 Water container metaphor and probabilistic independence

(a)

Figure 4: Different perspectives for three variables

Y=no

Y=yes

X=yes X=no X=yes X=no

Z=yes Z=no

 1 0

 0

(b)

X=no

X=yes

Z=yes Z=no Z=yes Z=no

Y=yes Y=no

 1 0

 0

(c)

Z=no

Z=yes

Y=yes Y=no Y=yes

X=no X=yes

Y=no

 1 0

 0

4

1
5

3
6

5

3

2

9

4

7

1

15

8

90

29
9

4
18

13

25

18

11

3 10
3

29

15 6

5

17

5

11

7 7

5

5

1
60

29
180

131

Y=male

Y=female

X=yes X=no

(a)

Figure 3: Different perspectives for two variables
(b)

 0 1

 0

X=no

X=yes

Y=female Y=male

 0 1

 0

3

1

3

2

4

1

18

7

7

4

11

2

 5

Dependence and independence relationships among random variables are obvious from
eikosograms. Flatness across 2 or more rectangles means the equality of some conditional
probabilities and hence some kind of conditional probabilistic (or unconditional if completely flat)
independence. For example:

For Figure 5(a), Pr(Y=yes|X=yes,Z=yes) is equal to Pr(Y=yes|X=no,Z=yes), but
Pr(Y=yes|X=yes,Z=no) is not equal to Pr(Y=yes|X=no,Z=no), similarly for Y=no, thus random
variable Y is independent of X given Z=yes, but given Z=no, Y and X are dependent.
For Figure 5(b), Pr(Y=yes|X=yes,Z=yes) is equal to Pr(Y=yes|X=yes,Z=no), and
Pr(Y=yes|X=no,Z=yes) is equal to Pr(Y=yes|X=no,Z=no), similarly for Y=no, thus random variable Y
is independent of Z given X, but given Z, Y and X are dependent.

For Figure 5(c), all conditional probabilities of Y are equal, hence Y is independent of X and Y is
independent of Z, but we don’t know the relation between X and Z, we cannot say the three random
variables are completely independent with each other. See [3] for more details.

We can imagine that an eikosogram is a water container where a barrier exists between any two
adjacent vertical strips. When we remove the barrier, the level of water in both containers will become
the same and represent some sort of conditional independence. This behavior has been simulated in the
software and will be discussed in detail in the next section.

3. Software implementation

Eikosogram software is written in Java. The program reads in data from a disk file and generates
graphs . I assume the random variables are categorical , the count is integer. The data input file has the
following format:

variable_name1, value1,value2,...,valueN1
variable_name2, value1,value2,...,valueN2

(a)

Figure 5: Independence in eikosogram

Y=no

Y=yes

X=yes X=no X=yes X=no

Z=yes Z=no

 0

(b) (c)

Y=no

Y=yes

X=yes X=no X=yes X=no

Z=yes Z=no

Y=no

Y=yes

X=yes X=no X=yes X=no

Z=yes Z=no

 6

 …
variable_nameM, value1,value2,...,valueNm
count11,count12,...count1N (where count is integer and N=N2*...*Nm)
…
countk1,countk2,...countkN (where k=N1)

For example, the data input file for Figure 1(a) looks like this:
Y,female,male
X,yes,no
40,30
20,90

List 1.

This file may correspond to the following survey story:
The survey is about the attitude of students in a class to some school policy: the total number of
students is 180, 110 male and 70 female; among the male, 20 students support the policy, 90 don’t;
while 40 female students support it and 30 don’t. The following table shows the survey results:

Data file for Figure 1(b) looks like this:
Y,yes,no
Z,yes,no
X,yes,no
210,196,42,112
105,245,252,98

List 2.
which corresponds to this table of results:

Z=yes Z=no
X=yes X=no X=yes X=no

Y=yes 210 196 42 112
Y=no 105 245 252 98

 Table 2.

X
Y

male

female

total

total yes no

40 30 70

20 90 110

60 120 180

Table 1.

 7

3.1 Grounding probability and generating graphs

The probabilities are calculated by the ratios of the corresponding counts. The following graphs are
the same as Figure 3 except the data values in Table 1 are shown in the corresponding rectangles:

The total sum is 180. For Figure 6 (a), the marginal probability of X is Pr(X=yes)=(20+40)/180=1/3;
the conditional probability of Y given X is Pr(Y=female|X=yes)=40/(40+20)=2/3; similar
computations apply for the rest of the probabilities.
The calculations for three or more variables are very similar to the above; the key here is to grab the
data from the data input file and put it into the correct rectangle (which corresponds to the correct
random variable values). The following graph is the same as Figure 4, but with the labels 1 to 8 in
each rectangle. Rectangles that have the same labels correspond to the same probability count and
should have the same area. In each graph, label 1 corresponds to the survey count 210, label 2: 196,
label 3: 42, label 4: 112, label 5: 105, label 6: 245, label 7: 252, label 8: 98.

(a)
Figure 7: Different perspectives for three variables

Y=no

Y=yes

X=yes X=no X=yes X=no

Z=yes Z=no

 1 0

 0

(b)

X=no

X=yes

Z=yes Z=no Z=yes Z=no

Y=yes Y=no

 1 0

 0

(c)

Z=no

Z=yes

Y=yes Y=no Y=yes

X=no X=yes

Y=no

 1 0

 0

1

5

2

3

4

6 7 8

1

2

3

4

5

6

7

8

1

3

5

7

2

4

6

8

3

2

9

4

7

1

15

8 29

15

 10
3

25

18
6

5

17

5

11

7
7

5

Y=male

Y=female

X=yes X=no

(a)
Figure 6: Grounding probabilities for two variables

(b)

 0 1

 0

X=no

X=yes

Y=female Y=male

 0 1

 0

40

30

20

90

40

30

20

90

3

1

3

2

4

1

18

7

7

4

11

2

4

1
5

3
6

5
90

29
9

4
18

13
5

1
60

29
180

131

 8

It is a bit more involved if the number of variable is more than 3 and the number of values is more
than 2, but the basic principles remain the same; to rearrange the rectangles in different perspectives,
we identify them by the random variables and the values corresponding to them. The software can deal
with any number of variables and any number of values for each. Strictly speaking, this is limited by
the screen size and resolution, but very rarely we deal with more than 4 variables and more than three
variable values when using eikosograms.

3.2 Symmetry among random variables

3.2.1 Data structure used for storing the raw data
The program uses ArrayList from Java collections framework (part of the java.util package) to store
the raw data read from flat disk file. There are some advantages to using this:
(i). Memory efficient: only store the pointer (or reference) in the data structure;
(ii). Algorithm efficient and robust: the code of the collection framework has been extensively tested,
and is very professional, thus efficient and succinct.
(iii). Easy and convenient to use: the add and remove item from list are very easy and there is no need
to program the reference operations.
In the program, three ArrayLists are used:
1. alVarName: used to store variable names;
2. alVarValue: used to store variable values;
3. alNum: used to store the number of values for each variable;
For example: after reading the data file for figure 1(a), the content of the above ArrayLists are:

Data file(List 1): ArrayList content :

Y,female,male alVarName: Y,X
X,yes,no alVarValue: female,male, yes, no
40,30 alNum: 2,2
20,90

and for Figure 1(b):
Data file(List 2):

Y,yes,no alVarName: Y,Z,X
Z,yes,no alVarValue: yes,no,yes,no,yes,no
X,yes,no alNum: 2,2,2
210,196,42,112
105,245,252,98

The alNum serves as a pointer when we grab values from alVarValue for variables in alVarName: for
Figure 1(b), the first number ‘2’ in alNum indicates the first 2 values in alVarValue which are ‘yes’
and ‘no’ are the values of the first random variable in alVarName which is ‘Y’, and so on.
The integer counts are stored in an array called ‘probCount’, the order of those number in the array
corresponds to the contents of the above three ArrayLists. The computation and construction of an
eikosogram are based on these data structures. E.g. for Figure 3, after generating (a), before
generating (b), the content of the above data structures was changed as follow:

 9

 Before generating
(a)

After (a), before (b)

alVarName Y,X X,Y
alVarValue female,male,yes,no yes,no,female,male
alNum 2,2 2,2
probCount 40,30,20,90 40,20,30,90

Table 3.

Similarly for figure 4:

 Before (a) After (a),before(b) After(b), before(c)
alVarName Y,Z,X X,Z,Y Z,Y,X
alVarValue yes,no,yes,no,yes,no yes,no,yes,no,yes,no yes,no,yes,no,yes,no
alNum 2,2,2 2,2,2 2,2,2
probCount 210,196,42,112,105,245,252,98 210,42,105,252,196,112,245,98 210,105,196,245,42,252,112,98

 Table 4.

The algorithm used is pretty straightforward; in the ArrayList, we circulate the contents, the number
of steps of circulation being based on the content of ‘alNum’. The change of ‘probCount’ is a bit
more complicated because the algorithm needs to deal with any number of variables each having any
number of values. It becomes trivial after careful study of the situation. This algorithm is
implemented in the method ‘reCalProbCount()’ in the class ‘Eikosogram’ of the source code file.

3.3 Water container metaphor and probabilistic independence

The simulation of the water container metaphor to form some sort of probabilistic independence is
the main function of the program. The barriers are represented by small buttons on the top of the
graph, like this:

When we click one of the buttons to remove the barrier, several situations need to be considered:

Y=male

Y=female

X=yes X=no

(a) Figure 8: Barriers for two variables (b)

 0 1

 0

X=no

X=yes

Y=female Y=male

 0 1

 0

40

30

20

90

40

30

20

90

barriers

3

2

4

1

7

4

11

2

X=no

X=yes

 0

 0

30

7

4

11

2

3

1
18

7

 10

3.3.1 None of the other barriers ever clicked before

 This is the easiest situation, i.e. the first time we click a barrier after the eikosogram is generated, we
only need to consider the two vertical ‘chambers’ separated by the barrier clicked and, of course, all
perspectives of the eikosogram need to be recalculated. The following are two examples:

Example 1. (See Figure 8) Click the barrier in Figure 8 (a): the rule here is to keep the marginal of X
fixed, the sum of the corresponding data counts does not change. i.e. for Figure 9(a), the sum of the
data count of the left strip is still 40+20=60, the sum of the lower two rectangles is still the 40+30=70,
this simulates the behavior of removing the barrier from the water container, with the amount of water
in the chambers separated by the barrier staying the same. To adjust the water level to be the same, the
computation is:

Data count for Y=female, X=yes changed from 40 to (40+30)/3=70/3;
Data count for Y=female, X=no changed from 30 to (40+30)*2/3=140/3;
Data count for Y=male, X=yes changed from 20 to (20+90)/3=110/3;
Data count for Y=male, X=no changed from 90 to (20+90)*2/3=220/3;

This change must happen in the corresponding rectangles in (b) also. Recalculating the probabilities
based on the changed data count, we get the following eikosograms after clicking the barrier in Figure
8(a) to arrive at the equal water levels as in Figure 9 (a):

The calculation of the probability is the same as before, e.g.
Pr(Y=femal|X=yes)=(70/3)/(70/3+110/3)=7/18, etc. This is exactly what happened in the program.
Clicking the barrier in (b) generates the same graph based on a similar analysis.

Example 2. Figure 10 is the same as figure 7 & 4, the data counts correspond to each rectangle are
listed in Table 5.

Y=male

Y=female

X=yes X=no

(a)
Figure 9: Barriers for two variables

(b)

 0 1

 0

X=no

X=yes

Y=female Y=male

 0 1

 0

Click this

3

110

18

7

3

220

3

70
3

140

3

140
3

220

3

1

3

70
3

110

3

1
18

7

 11

data
count 210 196 42 112 105 245 252 98

 Table 5.

The total is 1260.

click the left barrier in Figure 10 (a), the rectangles labeled 1,2,5,6 in (a)(b)(c) need to be recalculated.
In (a). The recalculation is similar to example 1 but with an important little difference (pay attention

to the ‘
5

3
÷ ’ part):

Data count for Y=yes,X=yes,Z=yes (rectangle 1) changed from 210 to ()
6

1015

5

3

4

1
196210 =÷!+ ;

Data count for Y=yes,X=no,Z=yes (rectangle 2) changed from 196 to

()
6

1421

5

3
)
4

1

5

3
(196210 =÷!"+ ;

Data count for Y=no,X=yes,Z=yes (rectangle 5) changed from 105 to ()
6

875

5

3

4

1
245105 =÷!+

Data count for Y=no,X=no,Z=yes (rectangle 6) changed from 245 to ()
6

1225

5

3
)
4

1

5

3
(245105 =÷!"+

The calculation formula is readily derived from the rules discussed in Example 1, i.e. for graph (a) (on
which the barrier was removed), keep the marginal of the joint distribution of X and Z fixed, and keep

(a)
Figure 10: Eikosograms for three variables before removing barrier

Y=no

Y=yes

X=yes X=no X=yes X=no

Z=yes Z=no

 1 0

 0

(b)

X=no

X=yes

Z=yes Z=no Z=yes Z=no

Y=yes Y=no

 1 0

 0

(c)

Z=no

Z=yes

Y=yes Y=no Y=yes

X=no X=yes

Y=no

 1 0

 0

1 2

3

4

5 6 7 8

1

2

3

4

5

6

7

8

1

3

5

7

2

4

6

8

4

1

5

3
6

5

3

2

9

4

7

1

15

8 29

15

11

3 10
3

25

18
6

5

17

5
11

7
7

5

1 5 6 7 8 2 3 4

90

29
9

4
18

13
60

29
180

131

 12

the sum of data account in corresponding rectangles fixed, which simulates the amount of water in
tanks not changing when we remove barrier.

We summarize the new data distribution in the Table 6:

data
count 1015/6 1421/6 42 112 875/6 1225/6 252 98

 Table 6.
Based on these data, recalculate all probabilities and regenerate all (a),(b),(c), we get

Note that since the sum of the data count of rectangles 1 & 2, 5&6 , 1&5 and 2&6 don’t change, the
joint probabilities of X & Z and Z & Y (Figure 11 (a) and (b)) don’t change, but the joint probability
of Y and X does change since rectangle 1 changed and 3 didn’t. E.g. Originally,

5

1

1260

42210
),Pr(=

+
=== yesXyesY ; after the click, rectangle 1 changed from 210 to 1015/6 and

1080

181

1260

42
6

1015

),Pr(=

+

=== yesXyesY ;

Also note that in the last two strips of (c) , i.e. rectangle 2,4,6,8,

6789.
299

203

112
6

1421
6

1421

),|Pr(!=

+

==== noXyesYnoZ and

(a)
Figure 11: Eikosograms for three variables after removing the left barrier

Y=no

Y=yes

X=yes X=no X=yes X=no

Z=yes Z=no

 1 0

 0

(b)

X=no

X=yes

Z=yes Z=no Z=yes Z=no

Y=yes Y=no

 1 0

 0

(c)

Z=no

Z=yes

Y=yes Y=no Y=yes

X=no X=yes

Y=no

 1 0

 0

Clicked this

1 2

3

4

5 6 7 8

1
3

5
7

2 4 6
8

1

3

5

7

2

4

6

8

181

145 25

18

341

125 299

203
37

25

12

5

11

3 12
5

15

8

7

1

54

29

1 5 6 7 8 2 3 4

4

1
1080

181
60

29
1080

821
90

29
9

4
6

5
5

3

 13

6757.
37

25

98
6

1225
6

1225

),|Pr(!=

+

==== noXnoYnoZ

The computer screen can not distinguish this difference, so it shows some ‘flatness’, but we cannot
infer independence of Z and Y given X=no; this small ‘drawback’ is due to the equipment we used to
display the graph, not to the eikosogram itself. The software implementation includes a button that
can be used to switch between fraction and decimal display, because sometimes the fraction contains a
huge numerator or denominator (see Examples in 3.3.3). Due to the above analysis, before making any
conclusion of independence, we need to check the fractional display.

3.3.2 Some barriers have been removed already

Obviously the barriers have to be adjacent to the one we are about to click, otherwise we don’t need to
consider it since it does not affect what we are going to do. Let’s continue the Example 2 in the last
section. We now remove the middle barrier in (a). Since the left barrier has been removed already,
the water tanks of 1,2,5 & 6 have to be considered as the same container. Again we don’t change the
joint distribution of X & Z in (a) and keep the sums of correspondent data counts the same as before.
The rectangles 1,2,3,5,6,7 need to be recalculated (the data before this action is in Table 6 now):

Data count for Y=yes,X=yes,Z=yes (rectangle 1) changed from
6

1015 to

5

672

6

5

4

1
)42

6

1421

6

1015
(=÷!++ ;

Data count for Y=yes,X=no,Z=yes (rectangle 2) changed from
6

1421 to

25

4704

6

5
)
4

1

5

3
()42

6

1421

6

1015
(=÷!"++ ;

Data count for Y=yes,X=yes,Z=no (rectangle 3) changed from 42 to

25

3136

6

5
)
5

3

6

5
()42

6

1421

6

1015
(=÷!"++ ;

Similar calculations apply for rectangle 5, 6, 7. The new data counts are summarized in table 7:

data
count 672/5 4704/25 3136/25 112 903/5 6321/25 4214/25 98

 Table 7.

Based on these data, recalculating all probabilities and regenerating all (a), (b), (c), we get

1 5 6 7 8 2 3 4

 14

It’s easy to verify the results using the same calculation as before applied to the data in Table 7.

If we remove the right barrier second, the calculation will be the same as 3.3.1 since the middle barrier
still exists. If we remove the right barrier second and the middle one third, the calculation will be
similar to the last example, only this time the rectangles 3,4,7,8 also need to be considered as the same
tank.

Data count after removing left and right barriers in (a):

data
count 1015/6 1421/6 539/6 385/6 875/6 1225/6 1225/6 875/6

 Table 8.

Data count after removing all barriers in (a):

data
count 140 196 392/3 280/3 175 245 490/3 350/3

 Table 9.

It’s easy to verify the probabilities in Figure 13 from the data in Table 8 and Figure 14 from Table 9.

(a)
Figure 12: Eikosograms for three variables after removing the middle barrier

Y=no

Y=yes

X=yes X=no X=yes X=no

Z=yes Z=no

 1 0

 0

(b)

X=no

X=yes

Z=yes Z=no Z=yes Z=no

Y=yes Y=no

 1 0

 0

(c)

Z=no

Z=yes

Y=yes Y=no Y=yes

X=no X=yes

Y=no

 1 0

 0

Clicked this first Clicked this second

1 2 3
4

5 6 7 8

1

2

3

4

5

6

7

8

1

3

5

7

2

4

6

8

4

1
6

5

75

32
15

8
12

5 53

28

12

5 68

43
29

15 67
42

179

129

5

3

1 5 6 7 8 2 3 4

1 5 6 7 8 2 3 4

125

32

9

4

60

29

4500

3247

 15

We can easily see from Figure 13(a) that given Z, Y and X are independent; this relation is also shown
in (b). No other independence relationships exist.

From Figure 14, we can see that, Y and X are independent given Z, which is also shown in (b); Y and
Z are independent given X, shown in (c); No other independence relationships exist.

3.3.3 Remove barriers from a different container

In Figure 11, reproduced here as Figure 15(data as in Table 10), has the left barrier removed in (a). We
now consider what happens when we follow this by removing the left barrier in (b). This removal
affects the rectangles 1 & 2 but not 5 & 6.

(a)
Figure 14: Eikosograms for three variables after removing all barriers in (a)

Y=no

Y=yes

X=yes X=no X=yes X=no

Z=yes Z=no

 1
 0

 0

(b)

X=no

X=yes

Z=yes Z=no Z=yes Z=no

Y=yes Y=no

 1 0

 0

(c)

Z=no

Z=yes

Y=yes Y=no Y=yes

X=no X=yes

Y=no

 1 0

 0

Clicked this first Clicked this second Clicked this last

1 2 3 4

5 6 7 8

1 3

2
4 6

5
7

8

1

3

5

7

2

4

6

8

4

1
5

3
6

5

9

4
12

5 12

7

12

5
12

7

15

4

29

15
31

21

(a)
Figure 13: Eikosograms for three variables after removing the right barrier

Y=no

Y=yes

X=yes X=no X=yes X=no

Z=yes Z=no

 1 0

 0

(b)

X=no

X=yes

Z=yes Z=no Z=yes Z=no

Y=yes Y=no

 1 0

 0

(c)

Z=no

Z=yes

Y=yes Y=no Y=yes

X=no X=yes

Y=no

 1 0

 0

Clicked this first Clicked this second

1 2
3 4

5 6 7 8

1

2

3

4

5

6

7

8

1

3

5

7

2

4

6

8

4

1

54

29

36

11

90

29

12

5 12

7

12

5 12
7

222

145
12

5 12

7 258
203

5

3
6

5
9

4
18

13

180

37

60

29

18

13

9

4
9

7
135

29

60

29

108

77

 16

data
count 1015/6 1421/6 42 112 875/6 1225/6 252 98

 Table 10. Data after removing the left barrier in (a):

We apply the same method when we remove the barrier in (a). Then rectangles 1,2,3,4 will be changed
in area but not 5,6, and so the flatness of rectangles 1,2 in (a) will be broken. Figure 16 shows the
result:

(a)

Figure 16: Eikosograms for three variables removing barriers from different graphs, as implemented

Y=no

Y=yes

X=yes X=no X=yes X=no

Z=yes Z=no

 1
 0

 0

(b)

X=no

X=yes

Z=yes Z=no Z=yes Z=no

Y=yes Y=no

 1 0

 0

(c)

Z=no

Z=yes

Y=yes Y=no Y=yes

X=no X=yes

Y=no

 1 0

 0

Clicked this first Clicked this second

1 2

3

4

5 6 7 8

1

2

3

4

5

6

7

8

1

3

5

7

2

4

6

8

43200

10249
5

3
43200

36551

10249

5249 15671
8671

10631

1991
6649

3289

90

29
9

4
18

13

480

181 12

5
25

18

40

29

1080

181
60

29
1080

821

341

125 40

29
37

25

(a)
Figure 15: Eikosograms for three variables removing barriers from different graphs

Y=no

Y=yes

X=yes X=no X=yes X=no

Z=yes Z=no

 1 0

 0

(b)

X=no

X=yes

Z=yes Z=no Z=yes Z=no

Y=yes Y=no

 1 0

 0

(c)

Z=no

Z=yes

Y=yes Y=no Y=yes

X=no X=yes

Y=no

 1 0

 0

Clicked this Click this next

1

5

2

3

4

6 7 8

1 3

2 4 6

5
7

8

1

3

5

7

2

4

6

8

4

1

54

29

7

1

15

8
12

5

11

3
12

5
25

18

181

145

341

125 299

203

1 5 6 7 8 2 3 4

5

3
6

5
90

29

9

4
18

13

1080

181

60

29

1080

821

 17

The data in each rectangle after removing the left barrier in (b) would then be as in Table 11:

data
count 36743/240 60697/240 13937/240 23023/240 875/6 1225/6 252 98

 Table 11.

While simple, this approach has a significant drawback. Because the left barrier has already been
removed, this was asserting a conditional independence and it would be best if this were preserved,
that is the flatness should still be there after the action in (b). In other words, from a modeling
perspective, it might be reasonable to keep the independence of Y and X given Z= yes when we
further assert the independence of X and Z given Y=yes. Since the sum of rectangles 1&2 does not
change after we remove the left barrier in (b), if we keep the flatness in (a), the position of the left
barrier (which has been removed already) in (a) has to be changed, i.e. we have to adjust the joint
distribution of X and Z for Z=yes. This will cause the change of rectangle 5&6 in all three
eikosograms. For example, when we remove the left barrier in (b), not only the rectangle 1,2,3,4 will
be adjusted, but also 5&6. This side effect is caused by our intention to keep the independence of Y
and X given Z=yes. Here are some calculations and results:
We need to recalculate the joint probability of X=yes,Z=yes and data count of rectangle 5&6. (The
sum of 1&2 is 406)

800

181

406

1

5

3

240

36743
),Pr(=!!=== yesZyesX ;

data count in rectangle 5 is
48

6335

3

5

800

181
350 =!! ;

data count in rectangle 6 is
48

10465

3

5
)

800

181

5

3
(350 =!"!

1 5 6 7 8 2 3 4

43200

36551

90

29

9

4
18

13

1080

181

8640

4081
8640

6473

 18

The data count in each rectangle under the new independence restriction:

data
count 36743/240 60697/240 13937/240 23023/240 6335/48 10465/48 252 98

 Table 12.

Now the problem is: Can we implement this type of behaviour in software assuming the user can
remove (or reinstall) any barrier at any time? For example: continuing with Figure 17, what if the user
removes the right barrier in (a), which will cause a change of 3,4,7,8 in (a), but in (b), since the left
barrier has been removed already, the change in 3,4 will cause a change in 1,2 and that is related to 5,6
because of (a). How about we remove a barrier in (c) next? What about the eikosogram for four
random variables and more than two values each (Figure 2)?

These problems remain open. The software implemented here always assumes that conditional
independences are not necessarily preserved in one eikosogram when some are asserted (barriers
removed) in another.

3.4 Software Structure

The software is written in Java and includes 6 classes: Eikosogram (main function), EikosoCanvas,
EikosoRec, EikosoBarrier, EikosoInternalFrm and Fraction. All calculations in section 3.3 use rational
arithmetic to avoid rounding errors. The Fraction class defines the rational computation and the
method to display the fraction on the screen. Here is the class structure using UML:

(a)
Figure 17: Eikosograms for three variables removing barriers from different graphs

Y=no

Y=yes

X=yes X=no X=yes X=no

Z=yes Z=no

 1
 0

 0

(b)

X=no

X=yes

Z=yes Z=no Z=yes Z=no

Y=yes Y=no

 1 0

 0

(c)

Z=no

Z=yes

Y=yes Y=no Y=yes

X=no X=yes

Y=no

 1 0

 0

Click this first Click this second

1 2

3

4

5 6 7 8

1

2

3

4

5

6

7

8

1

3

5

7

2

4

6

8

800

181
5

3

54

29

10631

1991
6649

3289
480

181

25

18

40

29

2633

905
40

29
2167

1495

1 5 6 7 8 2 3 4

 19

The key component of this class is the gcd (greatest common divisor); gcd is calculated using the gcd
method of BigInteger class java.math.

EikosoBarrier class defines characteristics and the basic behaviours of the barriers in each graph.
Since it is clickable, this class is derived from the java swing JButton. The index field identifies the
barrier on the graph and, if ‘pressed’, the colour of this barrier will change to red, otherwise the colour
is green (may not true on mac or unix).

 20

EikosoRec defines characteristic and behaviours of each small rectangle in the eikosogram. Each
rectangle has a size given by its width and height and a position given by the left top coordinate: xPos
and yPos. Also, the characteristic contains the colour or shade given by the HSB values and the data
count corresponding to this rectangle. The data count includes an original one when the user first input
the data so that the user can reinstall the barrier to resume the original graph, and a current data count
calculated when the user removed a barrier. The rectangle is identified by the random variable value
corresponding to it.

 21

EikosoCanvas is the most important class of this application; all the calculations discussed in the last
section of this paper are in this class. Each ‘canvas’ holds one graph which includes a two dimensional
array of ‘rectangles’ such as Figure 17 (a). To display Figure 17, we need to generate three such
canvas objects. Besides the rectangles, the ‘canvas’ also contains some barriers. The call back
function ‘barActionPerformed()’ defines the actions after the user removes or reinstalls a barrier which
in turn calls the ‘reCalRec()’ or ‘resumeRec()’ method to do the calculations mentioned before.

 22

EikosoInternalFrm is a placeholder to hold ‘EikosoCanvas’, it only has one characteristic ‘index’
which identifies itself.

 23

Eikosogram is the main function of this java application, it defines some basic functions such as
changing colours and reading the data file to generate the original graph. The ‘reCalProbCount()’
method defines the calculations which generate different perspectives of an eikosogram. The
‘reCalCanvas()’ method is called by the EikosoCanvas method ‘ recalRec() ‘ to do the calculation on
other perspectives of the graph when the user removes a barrier. The resize behaviour of the main
frame is also defined here. (UML next page)

See appendix for the documents of these classes.

3.5 Examples in the software

The following examples are included in the software:
(i). Binary Association including: Perfect positive association; Part perfect positive association;
Positive association; Independence; Negative association; Part perfect negative association; Perfect
negative association;
(ii). Relating Events including: Coincident; Complementary; Mutually Exclusive; Independent;
(iii). Independence including: Y indep. X; Y indep. X given Z; Y indep. X given Z value; Not quite 3
way independence; 3 way independence;
For the details of these examples, see [1] section 4.3

4. Future work

The current version of the software has implemented everything until 3.3.3. It does not maintain user
defined conditional independencies across graphs. That is when a barrier is removed from one
eikosogram, the results do not respect barriers previously removed in other eikosograms. The future
work of the software development therefore includes maintaining all the previous independence
relation constraints when we remove a barrier. We may also study and compare the results of
applying different probability models to analyze contingence table and the ‘shape’ of data visualized
by eikosogram.

 24

 25

References:

[1]. Picturing Probability: the poverty of Venn diagrams, the richness of Eikosograms. W.H.Cherry
and R.W. Oldford, University of Waterloo August 7,2003
[2]. Probability, problems, and paradoxes pictured by eikosograms. R.W.Oldford, University of
Waterloo August 7, 2003
[3]. Understanding probabilistic independence and its modeling via Eikosograms and graphs.
R.W.Oldford, University of Waterloo August 7, 2003

Appendix: Eikosogram software documents

Class EikosoCanvas
public class EikosoCanvas
extends javax.swing.JPanel

Title: EikosoCanvas.java

Description:

Copyright: Copyright (c) 2005

Company: university of waterloo

Version:
1.0

Author:
glenn lee

Constructor Detail

EikosoCanvas

public EikosoCanvas(EikosoRec[][] rec,
 int index,
 Eikosogram ef)

Create an EikosoCanvas object with rec.
Parameters:

rec - two dimensional EikosoRec on this canvas
index - index of this canvas
ef - the host of this canvas

 26

Method Detail

getIndex

public int getIndex()
Returns:

Index of this canvas

addLabels

private void addLabels()

Add labels around the graph

addValues

private void addValues()

The probVal[][] is calculated in calRecs(), this method set location and add the probability
value labels on the graph. Also need to add two extra "0" labels.

getBar

public EikosoBarrier[] getBar()
Returns:

Array of barriers of this canvas

barActionPerformed

public void barActionPerformed(java.awt.event.ActionEvent e)

This call back function reacts on the user's click one barrier.
Parameters:

e - the event that user click a barrier

resumeRec

private void resumeRec(EikosoBarrier curBar)

 27

This method resumes the correspondent EikosoRec to its original status.
Parameters:

curBar - the barrier that user clicked

recalRec

private void recalRec(EikosoBarrier curBar)

Recalculate the correspondent EikosoRecs when users first click a barrier.
Parameters:

curBar - the barrier that user clicked

getRec

public EikosoRec[][] getRec()
Returns:

This canvas' eikosoRecs

setColor

public void setColor(java.awt.Color c)

Set the color of this canvas.
Parameters:

c - the color to be set for this canvas

getColor

public java.awt.Color getColor()
Returns:

the color of this canvas

calColor

private void calColor()

Assume instance variable 'Color c' has been set already, this method calculate colours for each
of its EikosoRec

 28

calRecs

private void calRecs()

Calculate recs' width, height, xPos, and yPos.

reCalGraph

public void reCalGraph(int width,
 int height)

The host method to refresh a canvas
Parameters:

width - The width of this canvas
height - The height of this canvas

clear

public void clear()

Remove everything from this canvas

paintComponent

public void paintComponent(java.awt.Graphics g)

Draw this canvas
Parameters:

g - graphic instance used to draw.

Class Eikosogram
public class Eikosogram
extends javax.swing.JFrame

Title: Eikosogram.java

Description:

 29

Copyright: Copyright (c) 2005

Company: university of waterloo

Version:
1.0

Author:
glenn lee

Constructor Detail

Eikosogram

public Eikosogram()

Create an empty frame.

Method Detail

makeBasicForm

private void makeBasicForm()

Generate the example menu and some general purpose buttons

jbtnChangeColorActionPerformed

public void jbtnChangeColorActionPerformed(java.awt.event.ActionEvent e)

Call back function for the change color button.
Parameters:

e - The event that user click the change color button

jbtnCloseActionPerformed

public void jbtnCloseActionPerformed(java.awt.event.ActionEvent e)

Call back function for the close button. used to exit the application
Parameters:

e - The event that user click the close button.

jbtnOpenFileActionPerformed

 30

public void jbtnOpenFileActionPerformed(java.awt.event.ActionEvent e)

Call back function for the open file button. Display the file chooser, then read file.
Parameters:

e - The event that user click the open file button.

jbtnResetActionPerformed

public void jbtnResetActionPerformed(java.awt.event.ActionEvent e)

Call back function for the reset button. Resume the original eikosogram.
Parameters:

e - The event that user click reset button.

readDataFile

private void readDataFile(java.lang.String str)

Read disc file
Parameters:

str - File name

clearScreen

private void clearScreen()

Remove all internal frames from the main frame.

readFile

private void readFile()

Read data file operation
Throws:

IOException -

genGraph

private void genGraph()

Generate all eikosograms

 31

reCalCanvas

public void reCalCanvas(int ind,
 EikosoRec[][] changedRec)

This method is called by reCalRec() from EikosoCanvas, it recalculates all graphs except the
'ind' one using the new changed EikosoRec

Parameters:
ind - The index of canvas that has been changed already, other canvases need to be changed
according to it.
changedRec - The two dimension array of the changed EikosoRec

exitForm

private void exitForm(java.awt.event.WindowEvent evt)

Exit the Application

Class EikosoRec
public class EikosoRec

Constructor Detail

EikosoRec

public EikosoRec(Fraction count,
 java.lang.String[] varName,
 java.lang.String[] varValue)

Create a new EikosoRec object
Parameters:

count - Data count corresponds to this rectangle
varName - Random variable names
varValue - Random variable values correspond to 'varName'

Method Detail

getVarName

public java.lang.String[] getVarName()

 32

Returns:
The variable names of this rectangle

getVarValue

public java.lang.String[] getVarValue()
Returns:

The variable values of this rectangle

setchanged

public void setchanged(boolean b)

Set the flag if this rectangle changed or not
Parameters:

b - True if changed, false if not

getchanged

public boolean getchanged()
Returns:

If this rectangle changed

getLabel

public javax.swing.JLabel[] getLabel()
Returns:

The label corresponds to this rectangle

getX

public int getX()
Returns:

The X coordinates of the left top corner of this rectangle

getY

 33

public int getY()
Returns:

The Y coordinates of the left top corner of this rectangle

setX

public void setX(int x)

Set the X coordinate of the left top corner of this rectangle
Parameters:

x - The X coordinates

setY

public void setY(int y)

Set the Y coordinate of the left top corner of this rectangle
Parameters:

y - The Y coordinates

getWidth

public int getWidth()
Returns:

The width of this rectangle

getHeight

public int getHeight()
Returns:

The height of this rectangle

getHSB

public float[] getHSB()
Returns:

The hsb color of this rectangle

 34

setHeight

public void setHeight(int height)

Set the height of this rectangle
Parameters:

height - The height about to be set

setWidth

public void setWidth(int width)

Set the width of this rectangle
Parameters:

width - The width about to be set

setHSB

public void setHSB(float h,
 float s,
 float b)

Set the hsb color of this rectangle
Parameters:

h - h component of color
s - s component of color
b - b component of color

getOriCount

public Fraction getOriCount()
Returns:

The original data count corresponds to this rectangle

getCurCount

public Fraction getCurCount()
Returns:

The current data count corresponds to this rectangle

setCurCount

 35

public void setCurCount(Fraction count)

Set the current data count of this rectangle after the rectangle changed
Parameters:

count - The data count about to be set

setOriCount

public void setOriCount(Fraction count)

Set the original data count of this rectangle
Parameters:

count - The data count about to be set

isEqual

public boolean isEqual(java.lang.String[] names,
 java.lang.String[] values)

Test if two rectangles correspond to the same data count
Parameters:

names - The variable name of the rectangle this compared
values - The correspondent variable value

Returns:
True if 'this' corresponds to the same data count with the rectangle compared

Class EikosoBarrier
public class EikosoBarrier
extends javax.swing.JButton

Title: EikosoBarrier

Description:

Copyright: Copyright (c) 2005

Company: university of waterloo

Version:
1.0

Author:

 36

glenn lee

Constructor Detail

EikosoBarrier

public EikosoBarrier(int ind)

Create a barrier object
Parameters:

ind - The index of this barrier in one perspective of eikosogram

Method Detail

getIndex

public int getIndex()
Returns:

The index of this barrier

getPressed

public boolean getPressed()
Returns:

True if this barrier has been removed, false otherwise

setPressed

public void setPressed(boolean b)

Set the status of this barrier: removed or not
Parameters:

b - True if this barrier has been removed, false if not

Class EikosoInternalFrm
public class EikosoInternalFrm
extends javax.swing.JInternalFrame

 37

Title: EikosoInternalFrm.java

Description:

Copyright: Copyright (c) 2005

Company: university of waterloo

Version:
1.0

Author:
glenn lee

Constructor Detail

EikosoInternalFrm

public EikosoInternalFrm(java.lang.String title,
 boolean b1,
 boolean b2,
 boolean b3,
 boolean b4,
 int ind)

Create an internal frame to hold one perspective of eikosogram
Parameters:

title - The title of this frame
b1 - Resizable
b2 - Closable
b3 - maximizable
b4 - Iconifiable
ind - The index of this frame

Method Detail

getIndex

public int getIndex()
Returns:

The index of this frame

 38

Class Fraction
public class Fraction

Title: Fraction

Description:

Copyright: Copyright (c) 2005

Company: university of waterloo

Version:
1.0

Author:
glenn lee

Constructor Detail

Fraction

public Fraction(java.lang.String numerator,
 java.lang.String denominator)

Create one fraction
Parameters:

numerator - The numerator of this fraction
denominator - The denominator of this fraction

Fraction

public Fraction()

Create the fraction '0'

Method Detail

floatValue

public float floatValue()

The float value of this fraction
Returns:

 39

The float value

setZero

public void setZero()

Set this fraction to '0'

toString

public java.lang.String toString()

The string display of this fraction
Returns:

The string

simplify

private void simplify()

Divide both numerator and denominator by their gcd

toFraction

public static Fraction toFraction(java.lang.String s)

Convert a string to a fraction
Parameters:

s - The string about to be converted
Returns:

A fraction object of the string

getNumerator

public java.math.BigInteger getNumerator()
Returns:

The numerator of this fraction

getDenominator

 40

public java.math.BigInteger getDenominator()
Returns:

The denominator of this fraction

setNumerator

public void setNumerator(java.math.BigInteger b)

Set the numerator of this fraction
Parameters:

b - The numerator about to be set

setDenominator

public void setDenominator(java.math.BigInteger b)

Set the denominator of this fraction
Parameters:

b - The denominator about to be set

getGcd

public java.math.BigInteger getGcd()
Returns:

The gcd of numerator and denominator of this fraction

setGcd

public void setGcd(java.math.BigInteger num,
 java.math.BigInteger den)

Set the gcd of this fraction
Parameters:

num - The numerator of a fraction to be set
den - The denominator of a fraction to be set

add

public Fraction add(Fraction f)

Add 'this' to another fraction f

 41

Parameters:
f - A fraction to be added

Returns:
The sum of two fractions

subtract

public Fraction subtract(Fraction f)

Subtract f from 'this'
Parameters:

f - The fraction to be subtracted
Returns:

The result of the subtraction

multiply

public Fraction multiply(Fraction f)

Multiply 'this' by a fraction f
Parameters:

f - The fraction to be multiplied
Returns:

The result of the multiplication

multiply

public Fraction multiply(int i)

Multiply 'this' by a integer i
Parameters:

i - The integer to be multiplied
Returns:

The result of the multiplication

divide

public Fraction divide(Fraction f)

Divide 'this' by a fraction f
Parameters:

f - The fraction to be divided
Returns:

 42

The result of the division; null if f is zero

divide

public Fraction divide(int i)

Divided 'this' by an integer i
Parameters:

i - The integer to be divided
Returns:

The result of the division; null if i is zero

