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1 Introduction

One characteristic of computational statistics is the processing of enormous amounts

of data. It is now possible to analyze large amounts of high-dimensional data through

the use of high-performance contemporary computers.

In general, however, several problems occur when the number of dimensions becomes

high. The first problem is an explosion in execution time. For example, the number of

combinations of subsets taken from p variables is 2p; when p exceeds 100, calculation

becomes difficult pointing terms of computation time. This is a fundamental situation

that arises in the selection of explanatory variables during regression analysis.

The second problem is the sheer cost of surveys or experiments. When questionnaire

surveys are conducted, burden is placed on the respondent because there are many

questions. And since there are few inspection items to a patient, there are few the bur-

dens on the body or on cost. The third problem is the essential restriction of methods.

When the number of explanatory variables is greater than the data size, most methods

are incapable of directly dealing with the data; microarray data are typical examples

of this type of data.

For these reasons, methods for dimension reduction without loss of statistical infor-

mation are important techniques for data analysis.

There are several methods to reduce the dimensionality of data. They include prin-

cipal component analysis(PCA), multidimensional scaling(MDS), kernel PCA, factor

analysis and so on. In this paper, my research work focuses on PCA, MDS, and kernel

PCA. From now, let me discuss each of them one after the other.
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2 Principal component analysis (PCA)

The main idea of principal component analysis is to reduce the dimensionality of a

data set which consists of a large number of correlated variables. At this time, it is

necessary to preserve as much as possible of the variation of original data set.

Suppose that the data is given on p variables, XT = (X1, X2, · · · , Xp) and n×1 matrix

X have the covariance matrix Σ with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0(When we

don’t know Σ, we can replace it by a sample covariance matrix S).

We want the data to lie in a linear subspace of lower dimension than p. Thus PCA

makes new variables that reduce the dimension of X. The new variables(principal

components or PCs) form a new coordinate system.

Let’s denote them with Y1, Y2, · · · , Yp. These variables are orthogonal linear trans-

formations of the original variables. Thus there are at most p variables of them.

Consider the linear combinations

Y1 = A1
T X = a11X1 + a12X2 + · · ·+ a1pXp

Y2 = A2
T X = a21X1 + a22X2 + · · ·+ a2pXp

Yp = Ap
T X = ap1X1 + ap2X2 + · · ·+ appXp

Then, we choose the first PC, Y1 = A1
T X , to have maximum variance, so that we

may grab as much of the variability in X1, · · · , Xp, as possible.

For random variables X1, · · · , Xp,

V ar(Y1) = V ar(a11X1 + a12X2 + · · ·+ a1pXp)

= V ar(A1
T X)
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= A1
T ΣA1

where Ai
T = (ai1, ai2, · · · , aip) for i = 1, · · · , p and XT = (X1, · · · , Xp)

The similar result is true for sample variances and covariances.

Let S be the sample covariance matrix with S = [Sij], a p× p matrix,

where Sij = 1
n−1

∑n
k=1(xik − x̄i)(xjk − x̄j) i, j = 1, . . . , p.

Then the sample variance of the linear combination A1
T X would be A1

T SA1.

Then we want to maximize V ar(Y1) = A1
T ΣA1. By the way it is clear that A1

T ΣA1

can be increased by multiplying A1 by some constant.

For example, (kA1
T )Σ(kA1) = k2A1

T ΣA1.

To eliminate this indeterminacy, we need to restrict our attention to the vectors of

unit length.

Then, we want to maximize

A1
T ΣA1 subject to A1

T A1 = 1 (1)

To solve the maximization problem with the constraint, it is useful to use Lagrange

multiplier λ1.

maxA1,λ1 A1
T ΣA1 − λ1(A1

T A1 − 1) (2)

Differentiating with respect to A1 gives the equation,

2ΣA1 − 2λ1A1 = 0 (3)

Which is equivalent to

ΣA1 = λ1A1 (4)
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We can see that λ1 and A1 are an eigenvalue and corresponding eigenvector of Σ.

(1),A1
T A1 = 1, means that A1 is a normalized eigenvector of Σ.

(4) and (1) says that

A1
T ΣA1 = A1

T λ1A1 = λ1A1
T A1 = λ1 (5)

Thus we have to maximize λ1.

If we arranged eigenvalues in descending order (λ1 ≥ λ2 ≥ · · · ≥ λp), the first PC is

the corresponding eigenvector with the largest eigenvalue, say Y1 = A1
T X.

The second PC, Y2 = A2
T X will be constraint to be uncorrelated with the first

Y1 = A1
T X. That is cov(A1

T X,A2
T X) = 0.

Now

cov(A1
T X,A2

T X) = A1
T ΣA2 = A2

T ΣA1 = A2
T λ1A1 = λ1A2

T A1 = λ1A1
T A2 = 0 (6)

Thus, we get 4 equations

A1
T ΣA2 = 0, A2

T ΣA1 = 0, A1
T A2 = 0, A2

T A1 = 0 assuming λ1 > 0 (7)

Therefore the principal directions are orthogonal.

Using the last one with normalization constraint, we use Lagrange multipliers λ2, φ

again.

maxA2,λ2,φ A2
T ΣA2 − λ2(A2

T A2 − 1)− φA2
T A1 (8)

Differentiating with respect to A2, gives the equation,

2ΣA2 − 2λ2A2 − 2φA1 = 0 (9)

If we multiply both sides by A1
T and divide by 2 gives,

A1
T ΣA2 − λ2A1

T A2 − φA1
T A1 = 0 (10)

(7) says A1
T ΣA2 = A1

T A2 = 0 and φ = 0 because A1
T A1 = 1

Therefore, going back to (9), ΣA2 = λ2A2.
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Thus, λ2 is also the eigenvalue of Σ and A2 is the corresponding eigenvector. Assuming

that Σ does not have repeated eigenvalues, λ2 cannot be equal to λ1. Therefore λ2 is

the second largest eigenvalue of Σ.

All PCs are generated in this way. So Y1 = A1
T X, Y2 = A2

T X, · · · , Yp = Ap
T X

are the principal components, and var(Ak
T X) = λk for k = 1, 2, · · · , p

Now we can choose some subset of Ais, A1, · · · , Aq.

Thus,

Y1 = A1
T X = a11X1 + a12X2 + · · ·+ a1pXp

Y2 = A2
T X = a21X1 + a22X2 + · · ·+ a2pXp

Yq = Aq
T X = aq1X1 + aq2X2 + · · ·+ aqpXp

where Yi ∈ Rq and q ≤ p

If q < p, we reduce the dimension.

Then, how can we choose q?

At this time, we can select the first q biggest eigenvalues to make the ratio between

the sum of the first q variance and total variance close to 1.

But,

p∑
i=1

var(Xi) = σ11 + σ22 + · · ·+ σpp = tr(Σ) (11)

Now since Σ is symmetric, we can write Σ as Σ = AΛAT , where Λ is the diagonal

matrix of eigenvalues and p × p matrix A = (A1, A2, · · · , Ap) so that AAT = AT A =

Ip×p.

Going back to (11),
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tr(Σ) = tr(AΛAT ) = tr(ΛAT A) = tr(Λ) = λ1 + λ2 + · · ·+ λp (12)

Thus, we might choose q so that, λ1+λ2+···+λq

λ1+λ2+···+λq+λq+1+···+λp
is close to 1.

We throw away remaining PCs when they do not influence this ratio so much.

In practice, we begin with Xis centred and with variance 1, i.e. xi
T 1 = 0 and xi

T xi = 1

so that we are finding the PCA on the sample correlation matrix rather than the sam-

ple covariance since we have a scaling problem with the sample covariance matrix.

Suppose we have the data measured with meter unit and some other data measured

with centimeter unit. The difference of two units can show the result we do not expect.

But with the correlation matrix, we do not need to care about this problem because

the correlation is already normalized.

3 Multidimensional scaling (MDS)

Multidimensional scaling (MDS) is also one of the methods to reduce dimension. The

technique starts with a matrix of dissimilarities between a set of observations.

Let be ∆ = [δrs]n×n dissimilarity matrix for n objects and δrs for r, s = 1, · · · , n be

dissimilarities such that

∀r, s δrs ∈ R, δrs ≥ 0, δrr = 0, δrs = δsr

Then the objective of MDS is to find a configuration X = [xrj]n×p of n points in p

dimensions (p ≤ n). Suppose D = [drs] be the n × n matrix of Euclidean distances

between each pair of points. We want the solution which has low dimension p and the

Euclidean distance drs of pair(r, s) of the new coordinates are close to δrs’s(∆ ≈ D).

Typically, no reduced dimension configuration will produce exact agreement between

∆ and D. Typically a measure of disagreement called the stress, S(∆, D) minimized

is to produce a configuration. We will introduce the definition of the stress S later.

MDS is classified into two categories : Metric MDS and Non-metric MDS.

Metric MDS starts with δrs which are distances

such that
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∀r, s, t δrs + δst ≥ δrt. (13)

In Non-metric MDS, δrs’s are not necessarily distances. In particular, it is possible

δrs + δst < δrt for some r, s, t.

From now let’s discuss each of them one after the other.

3.1 Metric MDS

We can divide whole progress of metric MDS into two main stages. In the first stage,

we try to get new configuration from the given dissimilarity matrix ∆. This stage is

called classical MDS. In the second stage, we try to minimize the stress S(∆, D).

1) Classical MDS
¯

Let’s define D∗ = [Drs], Drs = drs
2, then

Drs = (xr − xs)
T (xr − xs) =

p∑
j=1

(xrj − xsj)
2 (14)

Here, we only know drs not xr,xs and want to find xr,xs. In order to find X from

D, we define another n× n matrix B = [brs], where B = XXT .

Therefore,

brs = xr
Txs =

p∑
j=1

xrjxsj (15)

Since we can write D in terms of B,

Drs = brr + bss − 2brs (16)

We can solve X by finding B from D since we start with D. We use the form

B = XXT .

There are many more unknowns than equations which relate them. To obtain a

unique solution when finding B from D, we add p location constraints, which are,

n∑
r=1

xrj = 0 for ∀j or XT1 = 0 (17)
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Since the rows and columns of B add up to 0,

B1 = 0 and BT1 = 0

summing (16) over r, over s, and over r and s, we have

1T D =
n∑

r=1

Drs = tr(B) + nbss

D1 =
n∑

s=1

Drs = nbrr + tr(B)

1T D1 =
n∑

r=1

n∑
s=1

Drs = 2ntr(B)

Let,

D̄r• =

∑n
r=1 Drs

n
, D̄•s =

∑n
s=1 Drs

n
, D̄•• =

∑n
r=1

∑n
s=1 Drs

n2
. (18)

Then, we can derive B from D as below,

brs = −1

2
Drs +

1

2
brr +

1

2
Dss

= −1

2
Drs +

1

2
(D̄r• − tr(B)

n
) +

1

2
(D̄•s − tr(B)

n
)

= −1

2
(Drs − D̄r• − D̄•s + D̄••)

To make the calculation simpler, we define a n × n matrix C[crs], where crs =

−1
2
Drs = −1

2
drs

2.

Now we have,

brs = crs − c̄r• − c̄•s + c̄•• (19)

Therefore, B can be derived from C by double centering as

B = HCH (20)
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where H is the centering matrix,

H = I − n−111T (21)

with 1 = (1, 1, · · · , 1)T n× 1 matrix.

Since drs is the Euclidean distance between object r and s, B can be shown to be

a positive semi-definite matrix.

Because, drs is distance, there exists a configuration x1, x2, · · · , xn s.t.

−2crs = drs
2 = ‖ xr − xs ‖2 = xr

Txr + xs
Txs − 2xr

Txs (22)

Also,

−2c̄r• = xr
T xr +

1

n

∑
i

xi
T xi − 2xr

T x̄

−2c̄•s = xs
T xs +

1

n

∑
i

xi
T xi − 2x̄T xs

2c̄•• =
2

n

∑
i

xi
T xi − 2x̄T x̄

By substituting and cancelling, we obtain,

brs = xr
T xs − xr

T x̄− x̄T xs + x̄T x̄

= (xr − x̄)T (xs − x̄)

So,

B =




(x1 − x̄)T

...

(xn − x̄)T


 (x1 − x̄, · · · ,xn − x̄ )

= XcXc
T ≥ 0

where xc
T = (x1 − x̄,x2 − x̄, · · · ,xn − x̄).
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So it is possible to obtain the coordinate matrix X from B by applying an eigen-

vector analysis. If the rank of B is p, then B has p positive eigenvalues, which are

λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0.

Let Ai be the corresponding eigenvector of λi, a possible coordinate matrix X is

X = (
√

λ1A1,
√

λ2A2, · · · ,
√

λpAp).

By spectral decomposition of B, (because B is a symmetric matrix)

B = λ1A1A1
T + λ2A2A2

T + · · ·+ λpApAp
T

or

B = (f1 f2 · · · fp)




f1

f2
...

fp




= XXT

where fi =
√

λiAi.

[Relation between metric MDS and PCA]

Here, we can talk about the relation between metric MDS and principal component

analysis.

Given a data matrix X, to carry out classical scaling we should calculate the n × n

matrix of distances and then perform the above analysis. If X is of rank k(k < p), this

will lead to a new configuration matrix X∗, say, of order n×k which will not generally

be the same as the original data matrix. The analysis consists essentially in finding

the eigenvalues and eigenvectors of XXT .

As we’ve seen in chapter 2.1, to carry out a principal components analysis, we should

find eigenvalues and eigenvectors of the sample variance-covariance matrix, which is

S =
1

n− 1
XT X

Thus any connection between the two technique is related to the connection between

the eigenvectors of XXT and those of XT X. The ranks of the matrices X,XT ,XT X and
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XXT are all equal. So XT X and XXT have the same number of non-zero eigenvalues

although XT X is p× p and XXT is n× n.

Let µi and λi be the non-zero eigenvalues of XT X and XXT respectively, and let ei

and ai be corresponding eigenvectors, all being supposed to be of unit length, then

(XT X)ei = µiei

(XXT )Xei = µiXei

from which it follows that the eigenvalues are the same, that is,

µi = λi

while the eigenvectors are related by

ai = kiXei

for suitable constants ki. Then,

1 = ai
T ai = ki

2ei
T XT Xei = ki

2µiei
T ei = ki

2µi

so that ki = ± 1√
µi

and thus(if we use positive value)

fi =
√

µiai = Xei

and therefore the new configuration matrix

X∗ = (f1 f2 · · · fk) = XA

But we know that the matrix Z of principal component is equal to XA. Thus,

X∗ = Z

That is, the results of principal components analysis are exactly those of classical scal-

ing if the distances calculated from the data matrix are Euclidean.

The dimension of the resulting coordinate matrix X could be further reduced to
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q(q < p) by selecting the first q biggest eigenvalues to form X.

We can choose q such that λ1+λ2+···+λq

λ1+λ2+···+λq+λq+1+···+λp
is close to 1.

2) Minimizing the stress
¯

After we get the lower dimension configuration, we want to minimize the difference

between the original data’s dissimilarities and the new configuration’s dissimilarities.

In other words, we want to minimize the stress S.

Here we can use different choices of the stress, say,

Type1 : S1(D, D̂) =
n∑

r=1

n∑
s=1

(drs − d̂rs)
2

(23)

or

Type2 : S2(D, D̂) =
n∑

r=1

n∑
s=1

(drs
2 − d̂rs

2
)
2

(24)

or

Type3 : S3(D, D̂) =
n∑

r=1

n∑
s=1

(log drs − log d̂rs)
2

(25)

When we want to exaggerate the magnitude of drs, we can use type 2. In the other

hand, we use type 3 when we want to downplay the magnitude of large drs. In general,

people use type 1.

Now let’s investigate the way with type 1 of stress first.

Let the matrix D∗ = [drs
∗] mean the approximated distances between n points in q

dimensions(q < p).

Then we want to find D∗ which minimizes the stress S, which is

S =
n∑

r=1

n∑
s=1

(drs − drs
∗)2 (26)

To minimize S, the solution can be found by

∂S

∂xrj

= 0 ∀ r, j (27)

where

drs
∗ =

√√√√
q∑

j=1

(xrj − xsj)
2 (28)
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or

(drs
∗)2 =

q∑
j=1

(xrj − xsj)
2 (29)

By the chain rule,
∂S

∂xrj

=
n∑

s=1

(
∂S

∂drs
∗
∂drs

∗

∂xrj

) (30)

By differentiating (26) with respect to drs
∗ for certain r,s,

∂S

∂drs
∗ = −2(drs − drs

∗) (31)

By differentiating (29) with respect to xrj for certain j,

2(drs
∗)

∂drs
∗

∂xrj

= 2(xrj − xsj) (32)

or
∂drs

∗

∂xrj

=
xrj − xsj

drs
∗ (33)

By (30),(31),(33),

∂S

∂xrj

=
n∑

s=1

(
∂S

∂drs
∗
∂drs

∗

∂xrj

)

=
n∑

s=1

−2(drs − drs
∗)

(xrj − xsj

drs
∗

)

= α

n∑
s=1

(drs − drs
∗)

(xrj − xsj

drs
∗

)

So, the solution satisfies the following equation,

n∑
s=1

(drs − drs
∗)

(xrj − xsj

drs
∗

)
= 0 ∀ r, j (34)

We can simplify the above equation by defining an n× n matrix F = [frs], such that

frs =
drs − drs

∗

drs
∗ (r 6= s),

frr = −
∑

r 6=s

(drs − drs
∗

drs
∗

)
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Then, we can say (34) as

FX = 0 (35)

We now employ another n × n matrix F ∗ = [frs
∗], to derive an iterative equation

for finding the solution.

Let

frs
∗ = frs + 1 (r 6= s),

frr
∗ = frr − (n− 1)

Then, the relation between F and F ∗ is,

F = F ∗ + (nI − 11T ) (36)

F ∗ is a symmetric matrix whose row and column sums are zero. If X is also in a

centred form such that its column sums are zero, then,

1T X = 0 (37)

Therefore, (35) can be written in terms of F ∗ as follows,

− 1

n
F ∗X = X (38)

which suggests an iterative update step function,

− 1

n
Fi
∗Xi = Xi+1 (39)

After we get the initial configuration X1 in q dimensions, we can use (39) to get the

converged configuration to minimize the stress.

Now let’s investigate the way with type 2 and 3 of stress.

With type 2 of stress, that is referred to as least squares squared scaling. Similar

arguments to those used above show that instead of satisfying FX = 0 the minimum
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satisfies GX = 0 where G = (grs) is a symmetric matrix whose rows and columns sum

to zero and

grs = drs
2 − drs

∗2 (r 6= s)

grr = −
∑

s6=r

grs = −
∑

s6=r

(drs
2 − drs

∗2)

With type 3 of stress, that is referred to as logstress scaling. Similarly, it introduces

HX = 0 where

hrs =
log drs

2 − log drs
∗2

drs
∗2 (r 6= s)

hrr = −
∑

s 6=r

hrs = −
∑

s 6=r

log drs
2 − log drs

∗2

drs
∗2

3.2 Non-metric MDS

In metric MDS, the dissimilarities δrs obeyed the properties of a distance. But in non-

metric MDS, this may not be the case.

Non-metric MDS also preserves the rank order of the dissimilarities, that is if δrs ≤ δtu,

then the configuration of points should also have drs ≤ dtu (for all r, s, t, u).

Let drs be the Euclidean distance between the points r and s in the space. Then, the

coordinates are chosen so that, drs’s in the space match δrs’s as well as possible.

drs do not preserve the monotonicity. So we will introduce distances d̂rs close to drs

but such that the monoticity is preserved. We call these distances d̂rs, disparities, and

take them to be a function of the distance drs given by

d̂rs = f(drs)

where f is a monotonic increasing function, so that

δrs < δtu ⇒ d̂rs ≤ d̂tu ∀r, s, t, u.

In this way the disparities preserve the order of the original dissimilarities.
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The most common approach used to obtain the coordinates of the objects x1, x2, · · · , xn

given rank order information is an iterative process commonly referred to as the

Shepard-Kruskal algorithm.

We can sketch the algorithm as follows.

Step 1. Choose an initial configuration.

Step 2. Find drs from the configuration.

Step 3. Fit d̂rs, the disparities, by the PAV algorithm.

Step 4. If the Stress measure is sufficiently small, terminate. If not, find a new config-

uration by using the steepest descent.

Step 5. Go to step 2 to get test more.

From now, let’s look at the detailed contents step by step.

In step 1, we choose an initial configuration.

We might use the metric MDS to derive the initial coordinates X0 in the required lower

dimensional space, say p dimensional space.

But here is a problem for using metric MDS.

As we’ve seen in 2.2.1, we want that the dissimilarities can be interpreted as Euclidean

distances. That is true if the product matrix B is positive semidefinite. We can call it

Euclidean Embedding to make them Euclidean.

Since we are doing non-metric MDS, there can be some violations of the triangle in-

equality.

In other words, for some i, j, k,( s.t. i 6= j,j 6= k,k 6= i),

δij > δik + δkj

Here we want to calculate Euclidean distances dijs from the given dissimilarities δijs.

To do this, we need to revise δijs to satisfy triangle inequality.

We can think about the form,

kδij + c = δij
∗ for some k 6= 0 and c
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Here, for convenience, we set k = 1. Then, δij
∗ = δij + c.

And we just keep δii
∗ = 0.

For example, if δik + δkj < δij, we add c for each δij ∀ i, j (i 6= j), then the formular

is changed

(δik + c) + (δkj + c) < δij + c =⇒ δik + δkj + c < δij

It means that we can get δik
∗ + δkj

∗ > δij
∗ if we choose the value of c greater than or

equal to δij − (δik + δkj).

Here, there is a question.

Is it always possible to transform dissimilarities δij,(i < j) not only into distances, but

also into Euclidean distances by picking appropriate additive constants?

Then answer is yes.

We got following formula in metric MDS,

bij = −1

2
(dij

2 − 1

n

∑
i

dij
2 − 1

n

∑
j

dij
2 +

1

n2

∑
i

∑
j

dij
2) (40)

Substituting δij + c for dij in (40) should yield a matrix of bij’s that is positive semidef-

inite if an appropriate c is chosen.

Setting δij + c for dij(for i 6= j ) and dii = 0(for i = j),

we can use

dij = δij + (1− θij)c

where θij = 1 (i = j) and θij = 0 (i 6= j)

Then we obtain

bij
∗ = [

1

2
(δi•

2 + δ•j
2 − δ••

2 − δij
2)] + 2c[

1

2
(δi• + δ•j − δ•• − δij)] +

c2

2
[θij − 1

n
] (41)

where

δi•
2 =

1

n

∑
i

dij
2, δ•j

2 =
1

n

∑
j

dij
2, δ••

2 =
1

n2

∑
i

∑
j

dij
2,

δi• =
1

n

∑
i

dij
2, δ•j =

1

n

∑
j

dij
2, δ•• =

1

n2

∑
i

∑
j

dij
2
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So, (41) can be written

B∗ = B + 2cBr +
c2

2
H (42)

where

B =
1

2
(δi•

2 + δ•j
2 − δ••

2 − δij
2), Br =

1

2
(δi• + δ•j − δ•• − δij), H = I − 1

n
11T

Here we want to choose c so that B∗ is positive semidefinite.

To be positive semidefinite, xT B∗x ≥ 0 for ∀x.

The condition xT B∗x ≥ 0 is trivial if x is the 0 (xT B∗x = 0).

If x is any other vector (x 6= 0),

xT B∗x = xT [B + 2cBr +
c2

2
H]x

= xT Bx + 2cxT Brx +
c2

2
xT Hx

= k1 + ck2 + c2k3

In above equation, k3 > 0 because xT Hx (=
∑

i (xi − x̄)2) is positive for any x 6= 0.

To make above equation greater than or equal to 0, if c is chosen sufficiently large,

then c2k3 will dominate the other two terms k1 and ck2. Thus, xT B∗x can be positive

semidefinite with sufficiently large constant c.

Therefore, it is always possible to transform dissimilarities into Euclidean distances.

But we want to add the constant as small as possible because it may lessen the differ-

ence of each dissimilarity if we add big constant.

Then, how can we choose c?

1) We can choose

c = maxN (δij − (δik + δkj)) (43)

Since we want

δik + δkj + c > δij or c > δij − (δik + δkj) (44)

we choose minimum c to satisfy (44). [Cooper(1972) and Roskam(1972)]

This method check every case for all i, j, k. So it gives the optimal value of c, so
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called, which is the smallest c to make every triangle inequality satisfied. But with this

method, we should check all cases for i, j, k. So it asks expensive cost, it is possible to

take O(N3).

2) With another way, we can choose

α = maxM δij N > M (45)

Since we want

c > δij − δik + δkj, (46)

(46) is rewritten

c = δmax ≥ δij > δij − δik − δkj. (47)

So we can use c = δmax.

Compared to method 1), this method asks less cost, it take O(N2) since it checks all

cases for i, j. So running time is faster than that of method 1). But the value of c may

be greater than the value of c found in method 1). So method 1) shows more optimal

the value of c.

3) In addition, there is the additive constant method(Cailliez 1983)

In chapter 2.2.1, we saw

B = HCH where H = I − 1

n
11T and C[crs] = −1

2
Drs = −1

2
drs

2

B has the characteristic B = HB = BH and B1 = 0.

Since HH = H, HB = HHCH = B and BH = HCHH = B.

(I − 1

n
11T )(I − 1

n
11T ) = I − 1

n
11T − 1

n
11T +

1

n2
11T 11T

We want to find the smallest c∗ such that the dissimilarity measure δc defined by :

δc = δij + (1− θij)c, where θij = 1 (i = j) and θij = 0 (i 6= j)

has an Euclidean representation for all c ≥ c∗.

We have already shown that there always exist c∗ satisfying the Euclidean representa-

tion.
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The B∗ matrix associated to δc can be written

B∗ = B + 2cBr +
c2

2
H

where Br denotes the matrix associated to the dissimilarity measure δ
1
2 , Br = HC̃H

with C̃ = matrix with terms drs.

To show an Euclidean representation,

it is sufficient to show the matrix B∗ is positive semidefinite.

In other words

xT B∗x = xT Bx + 2cxT Brx +
c2

2
xT Hx (48)

is nonnegative for all x

If λn and µn are the smallest eigenvalues of B and Br respectively (λn is negative

by assumption),

xT Bx ≥ λnx
T Hx, xT Brx ≥ µnx

T Hx, c > 0 (49)

Thus (48) can be written

xT B∗x ≥ (λn + 2cµn +
c2

2
)xT Hx (50)

Therefore, for ∀x, xT B∗x is nonnegative provided c ≥ −2µn + (4µn
2 − 2λn)

1
2 ,

which shows that;

c∗ ≤ −2µn + (4µn
2 − 2λn)

1
2 (51)

Here we employ x∗ and c∗.

For a given x, xT B∗x is a function of c represented by a convex parabola, so to any x

corresponds a number α(x) such that

xT B∗x ≥ 0 if c ≥ α(x) (52)

Since the dissimilarity δ has no Euclidean representation, there is at least one x where

xT Bx < 0 and for which α(x) will be positive.

So the number

c∗ = supxα(x) = α(x∗) (53)
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is positive and such that

xT B∗x ≥ 0 for all x and all c ≥ c∗ (54)

x∗T B̃∗x∗ = 0 (55)

By (55), c∗ and x∗ verify B̃∗x∗ = 0.

With (48),

(B + 2c∗Br +
c∗2

2
I)Hx∗ = 0 (56)

Let

2Bx∗ = c∗y. (57)

Since c∗ is positive, by (56) and (57),

y + 4Brx
∗ + c∗Hx∗ = 0 (58)

If we combine (57) and (58) into the matrix form,

(
0 2B

−I −4Br

)(
y

Hx∗

)
= c∗

(
y

Hx∗

)

which proves that c∗ is an eigenvalue of the matrix.

M =

(
0 2B

−I −4Br

)

In order to show that c∗ is M ’s largest eigenvalue,

let a be an eigenvalue of M associated to the eigenvector

(
z

t

)

Then

2Bt = az and − z− 4Brt = at, (59)

so

(B + 2aBr +
a2

2
I)t = 0 and (B + 2aBr +

a2

2
H)t = 0 ⇔ tT Ba

∗t = 0 (60)

Thus, α(t) ≥ a, which implies c∗ ≥ a because of the definition of c∗.

So, the additive constant c∗ is the largest eigenvalue of the matrix M .
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In step 2, we calculate drs with the initial coordinates which we get in step 1.

In step 3, we determines disparities d̂rs from the distances drs by constructing an

isotonic regression relationship between the drs’s and δrs’s, under the requirement that

If δrs < δuv, then d̂rs ≤ d̂uv.

Isotonic regression applied to the estimation enables us to ensure that the monotonicity

property applies to the estimates.

Let X be the finite set x1, x2, · · · , xk with the order x1 < x2 < · · · < xk. A real valued

function f(x) on X is isotonic if xi, xj ∈ X and xi < xj imply that f(xi) ≤ f(xj).

Let g(x) be a given function on X and w(x) be a given positive function on X. Then

an isotonic function f ∗(x) on X is an isotonic regression on g(x) with weights w(x)

with respect to the ordering x1 < x2 < · · · < xk if f ∗(x) minimizes,

∑
x∈X

w(x)(g(x)− f(x))2

over all isotonic functions f(x).

We call f ∗(x) an isotonic regression on g(x) [R.E. Barlow, 1972].

If g(x1) ≤ g(x2) ≤ · · · ≤ g(xk), then this initial partition is also the final partition

and f ∗(xi) = g(xi), i = 1, 2, · · · , k.

If not, select any of the pairs of violators of the ordering ; that is, select an i such that

g(xi) > g(xi+1). Pool g(xi) and g(xi+1) with weight w(xi) and w(xi+1) as below,

f ∗(xi+1) = f ∗(xi) =
[w(xi)g(xi) + w(xi+1)g(xi+1)]

[w(xi) + w(xi+1)]

This method is called to the pooled-adjacent violator(PAV) algorithm.

If we adapt this to our situation, the PAV algorithm is described as follows.

For convenience, let the dissimilarities δrs be relabelled δi(i = 1, · · · , N), whereN =
n(n−1)

2
and place them in numerical order. Also, relabel the distance drs as di(i =

1, · · · , N) where di corresponds to the dissimilarity δi.
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Then, we can get the ordered pair set {(δ(i), d(i))}i=1
N .

Now beginning with d(1), the algorithm loops over the series from d(1) to d(N) and

checks if the drs values are monotonically related to the δrs’s. If any pair of adjacent

values (d(i), d(i+1)) violates required monotonicity property, then the following 3 steps

are performed. In our situation, since every w(xi) = 1, we can use just average.

1. Pool d(i) and d(i+1) by replacing each of them by their average.

2. Go backwards, check if d(i−1) and the pooled d(i) obey the monotone requirement,

if not, pool d(i−1),d(i) and d(i+1) into one average.

3. Continue to the left until the monotonicity requirement is satisfied. Proceed to the

right.

After adapting to PAV algorithm, we obtain a new ordered pair set {(δ(i), d̂(i))}i=1

N
,

which satisfies the requirement of monoticity.

Step 4. If the Stress measure is sufficiently small, terminate. If not, find a new

configuration by using the steepest descent.

In step 4, after obtained the ordered pair set {(δ(i), d̂(i))}i=1

N
by the PAV algorithm,

we measure the stress. If the stress value is sufficiently small, we can terminate the

process. If not, we want to obtain a new configuration of these data so that the stress

is minimized.

S is computed by

S =
n∑

r=1

n∑
s=1

(d̂rs − drs)
2

(61)

where r and s are two objects of ith pair.

Then, the new coordinates can be calculated using the steepest descent method.

Steepest descent method is an algorithm for finding the nearest local minimum of

a function which presupposes that the gradient of the function can be calculated.

The method starts at a point P0 and, as many times as needed, moves from Pi to Pi+1
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by minimizing along the line extending from Pi in the direction of −∇f(Pi), the local

downhill gradient.

When applied to a function f(x), the method takes the form of iterating

xi+1 = xi − εf ′(xi). (62)

from a starting point x0 for some small ε > 0 until a fixed point is reached.

With the stress S, d̂rs is given and fixed. So the value of drs will be updated by

iterations to find the local minimum of the stress S.

Here we can use very similar process to that of least square scaling in metric MDS. As

a result, we get

∂S

∂xrj

=
n∑

s=1

(
∂S

∂drs

∂drs

∂xrj

)

=
n∑

s=1

−2(d̂rs − drs)
(xrj − xsj

drs

)

= α

n∑
s=1

(
1− d̂rs

drs

)
(xrj − xsj)

where α is a constant.

Now we can use steepest descent method with this ∂S
∂xrj

.

Thus the step function is

xrj
(m+1) = xrj

(m) − ε

n∑
s=1

(
1− d̂rs

drs
(m)

)
(xrj

(m) − xsj
(m)) (63)

for m = 0, 1, · · · and j = 1, · · · , p

This step function is used to obtain new coordinates.

And the Stress measure is used to evaluate whether or not its change as a result of the

last iteration is sufficiently small.
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In step 5, Go to step 2 again.

4 Kernel PCA

In section 2, we treated general PCA technique.

Here, we are using kernel function to reduce the dimension in the non-linear case.

PCA is a linear dimension reduction technique but one which can be generalized to

a non-linear technique as follows. First consider a non-linear transformation Ψ of the

data from Rp to a possibly higher-dimensional space F , called the feature space, i.e.

Ψ : Rp → F, x 7→ Ψ(x) (64)

where m = dim(F ) > p and

Ψ =




ψ(x1)
T

...

ψ(xn)T




A linear dimension reduction like PCA is now performed in this higher dimensional

space, hopefully producing a lower dimension than the original dimension of the data.

Here, the space F can have an arbitrarily large, possibly infinite, dimensionality.

Similarly to the case of PCA, assuming we can center the data in feature space, i.e.

n∑

k=1

ψ(xk) = 0

we can write the feature space covariance matrix as

CF =
1

n

n∑
j=1

ψ(xj)ψ(xj)
T =

1

n
ΨT Ψ, (65)
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which can be diagonalized with nonnegative eigenvalues(λ ≥ 0) and eigenvectors vF ∈
F \ {0} and vF

TvF = 1 satisfying

λvF = CFvF (66)

If the eigen vectors of CF are v1, · · · ,vq (q < m and q < p) corresponding to λ1 ≥
· · · ≥ λq ≥ · · · ≥ λn

Then we can form principal components

Y =




y1
T

...

yn
T


 = Ψ (v1, · · · ,vq )

and the ith ”kernel principal component” will be

Yi = Ψvi

Here, we do not know about Ψ exactly. But fortunately, we only need to find Ψvi not

Ψ.

And for any eigen vectors v of CF , we have

ΨT Ψv = nλv (67)

If we left-multiply by Ψ, we get

ΨΨT Ψv = nλΨv (68)

or

ΨΨTY = nλY (69)

Define

K = ΨΨT (70)

where kij = ψ(xi)
T ψ(xj) i.e. the standard innerproduct applied to F .

We will call the matrix K a kernel matrix and note that it has as its contents the inner

products of transforms of the observation vectors xi and xj; i.e. Kij =< Ψ(xi), Ψ(xj) >

We still do not know about ψ(·). But all we need is the value of its standard inner
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product on F .

That is

k(x,y) = ψ(x)T ψ(y)

=
m∑

i=1

ψi(x)ψi(y)

In practice, people choose only k(x,x) without determining Ψ.

Here, we can choose kernel function k(xi,xj). Three widely used kernels are the linear,

polynomial and Gaussian kernels, given by :

k(xi,xj) = xi · xj

k(xi,xj) = (1 + xi · xj)
a

k(xi,xj) = e
−‖xi−xj‖2

2σ2

First, in linear kernel case, the kernel PCA is equal to just PCA as if

ψ(xi) = xi F = Rp

In polynomial case, the kernel function maps x into all possible pth degree products

and can be separated into each of x and y.

For example, when a = 2,

k(x,y) = (1 + xTy)
2

= 1 + 2x1y1 + 2x2y2 + x1
2y1

2 + x2
2y2

2 + 2x1x2y1y2

=




1√
2x1√
2x2

x1
2

x2
2

√
2x1x2




T 


1√
2y1√
2y2

y1
2

y2
2

√
2y1y2




= Ψ(x)T Ψ(y)
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In Gaussian case, the kernel does not appear to separate into the dot product of a Ψ(x)

and a Ψ(y). To see this, we consider the Talyor expansion of

k(x,y) = e
−‖x−y‖2

2σ2 (71)

If we set

z = −‖x− y‖2

2σ2
,

(71) becomes

ez = 1 + z +
1

2!
z2 +

1

3!
z3 + · · · (72)

where

z = −‖x− y‖2

2σ2
= −(xTx + yTy − 2xTy)

2σ2

Consider the case when p = 2.

ez = 1− 1

2σ2
(x1

2 + x2
2 + y1

2 + y2
2 − 2x1y1 − 2x2y2) +

1

4σ4
(xTx + yTy − 2xTy)

2
+ · · ·

Here, it is not so easy to see how to separate this into a single dot product of some

function Ψ(x) and Ψ(y) and it seems to require an infinite dimensional F

But in special case, x = y, we know in (71),

k(x,y) = e
−‖x−y‖2

2σ2 = 1 (73)

So with this kernel, F has the curious property that each vector in F has unit length,

in that

‖Ψ(x)‖2 = < Ψ(x), Ψ(x) >

= k(x,x)

= 1

Further

k(x,y) > 0 ∀ x,y
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That is with the Gaussian kernel, F is a single orthant on the surface of an infinute

dimensional unit sphere

Whichever kernel function is selected, we use the same way as that in section 2 to

get reduced dimension. So we choose q such that λ1+λ2+···+λq

λ1+λ2+···+λq+λq+1+···+λp
is close to 1.

5 Conclusion

In this paper, we discussed three methods of dimension reduction: Principal Compo-

nent Analysis, Multidimensional Scaling, Kernel PCA.

The main idea of principal component analysis is to reduce the dimensionality of a

data set by preserving as much as possible the variance covariance structure of the

original data through a few linear combinations of these variables. As much as possible

of the variation of original data set is preserved.

Multidimensional scaling starts with dissimilarities between a set of observations. MDS

is divided into two categories : metric MDS and non-metric MDS. In metric MDS, dis-

similarity is a distance. So we can use some characteristics about distance. As a

result, we can get the coordinates of points in fewer dimensions. In non-metric MDS,

dissimilarity can violate the triangle inequality. So we preserve the rank order. We

use Euclidean embedding to get a low dimensional structure so as not to violate the

triangle inequality. The problem of MDS is that it generate local minima when it is

concerned with the stress. There are a variety of approaches to avoid the local minima.

In nonlinear case, we can use kernel PCA. Conceptually we map data nonlinearly

into a higher dimensional feature space and there perform a linear reduction via PCA.

The trick is that because PCA depends only on inner products in the feature space, the

non-linear mapping need not be determined provided the inner product on the feature

space, (i.e. the kernel), is well defined. Not even the dimension of the feature space

need be explicitly determined.
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Different kernels can give different results. To avoid the problem of specifying the

kernel in advance, Weinberger and Saul [13] try to learn the kernel from the data.

They do so by imposing further constraints on the mapping Ψ(·) which are turned into

constraints on the Kijs. The problem is then cast as one of semi-definite programming

and solved in this way. Again some of the constraints(e.g. defining neighborhoods) are

somewhat arbitrary.
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